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Large or small, a typical data analysis project will involve most — if not all — of the following steps:

1. Read in data
2. Select variables (columns)
3. Mutate data into new forms
4. Filter observations (rows)
5. Summarize data
6. Arrange data
7. Write out updated data

Returning to our cooking metaphor from last lesson, if the first and last steps represent our raw ingredients
and finished dish, respectively, then the middle steps are the core techniques we use to prepare the meal.

As you can see, there aren’t that many. (There are, of course, many specialized tools for specialized tasks —
too many to cover in this course.) But the power of the core techniques comes from the infinite ways they
can be ordered and combined.

Tidyverse
The tidyverse is shorthand for a number of packages that are built to work well together and can be used in
place of base R functions. A few of the tidyverse packages that you will often use are:

• dplyr for data manipulation

• tidyr for making data tidy

• readr for flat file I/O

• readxl for Excel file I/O

• haven for other file format I/O

• ggplot2 for making graphics

• stringr for working with strings

• lubridate for working with dates

• purrr for working with functions

Many R users find functions from these libraries to be more intuitive than base R functions. In some cases,
tidyverse functions are faster than base R, which is an added benefit when working with large data sets.

Today we will focus on functions from the {dplyr} and {readr} libraries.
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## ---------------------------
## libraries
## ---------------------------

library(tidyverse)

── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──

✔ ggplot2 3.3.0 ✔ purrr 0.3.4
✔ tibble 3.0.1 ✔ dplyr 0.8.5
✔ tidyr 1.0.2 ✔ stringr 1.4.0
✔ readr 1.3.1 ✔ forcats 0.5.0

── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()

Check working directory
This script — unlike the others we’ve used so far — assumes that you are in the scripts directory, one down
from top-level project directory. You can check by typing getwd() in the R console. If your path is anything
other than <path>/<to>/edh7916/scripts (or whatever you’ve named your student_<last_name> repo), then
use the R command setwd() with relative paths to get where you need to be.

For example, if I run getwd() and see ~/courses/edh7916, that means my working directory is the top-level,
not scripts. I can get to the right spot by typing setwd("./scripts") in the console: it tells R, go down one
level into (./scripts) and make that the working directory. Were I to run getwd() afterwards, I should see
~/courses/edh7916/scripts.

You may not need to do this. But if you open RStudio using the Open Project menu above the upper-right
panel, you most likely will be in the top-level project directy — not quite right. Checking and setting your
working directory at the start of a session is a pain, but is a useful skill for when you work with collaborators
across multiple projects.

Notice that I’m not setting (i.e. hard coding) the working directory in the script. That would not work
well for sharing the code. Instead, I tell you where you need to be (a common landmark), let you get there,
and then rely on relative paths afterwards.
## ---------------------------
## directory paths
## ---------------------------

## assume we're running this script from the ./scripts subdirectory
dat_dir <- file.path("..", "data")

Read in data
So far, we’ve only used small nonce data sets. For this lesson, we’ll use a subset of the High School
Longitudinal Study of 2009 (HSLS09), an IES / NCES data set that features:

• Nationally representative, longitudinal study of 23,000+ 9th graders from 944 schools in
2009, with a first follow-up in 2012 and a second follow-up in 2016

• Students followed throughout secondary and postsecondary years
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• Surveys of students, their parents, math and science teachers, school administrators, and
school counselors

• A new student assessment in algebraic skills, reasoning, and problem solving for 9th and
11th grades

• 10 state representative datasets

If you are interested in using HSLS09 for future projects, DO NOT rely on this subset. Be sure to download
the full data set with all relevant variables and weights if that’s the case. But for our purposes in this lesson,
it will work just fine.

Throughout, we’ll need to consult the code book. An online version can be found at this link (after a little
navigation).

Quick exercise Follow the codebook link above in your browser and navigate to the HSLS09
codebook.

## ---------------------------
## input
## ---------------------------

## data are CSV, so we use readr::read_csv()
df <- read_csv(file.path(dat_dir, "hsls_small.csv"))

Parsed with column specification:
cols(

stu_id = col_double(),
x1sex = col_double(),
x1race = col_double(),
x1stdob = col_double(),
x1txmtscor = col_double(),
x1paredu = col_double(),
x1hhnumber = col_double(),
x1famincome = col_double(),
x1poverty185 = col_double(),
x1ses = col_double(),
x1stuedexpct = col_double(),
x1paredexpct = col_double(),
x1region = col_double(),
x4hscompstat = col_double(),
x4evratndclg = col_double(),
x4hs2psmos = col_double()

)

Unlike the readRDS() function we’ve used before, read_csv() prints out information about the data just read
in. Nothing is wrong! The read_csv() function, like many other functions in the tidyverse, assumes you’d
rather have more rather than less information and acts accordingly. We can see that all the columns were
read in as doubles (col_double()). For other data (or if we had told read_csv() how to parse the columns),
we might see other column types like col_integer(), col_character(), or col_logical().

Quick exercise readr::read_csv() is special version of readr::read_delim(), which can read
various delimited file types, that is, tabular data in which data cells are separated by a special
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character. What’s the special character used to separate CSV files? Once you figure it out,
re-read in the data using read_delim(), being sure to set the delim argument to the correct
character.

NOTE When a function comes from a specific library, I will sometimes signal that using :: notation:
<package>::<function>. Along as you’ve installed the package, you can actually call functions in R using
this notation if you don’t want to load the library at the top of the file (e.g. library(tidyverse)). We
won’t do that. I use this notation so it’s clear to you which R library a function comes from. When see
readr::read_csv(), that means the read_csv() function, which is part of the {readr} library.

Example data analysis task
Let’s imagine we’ve been given the following data analysis task with the HSLS09 data:

Figure out average differences in college degree expectations across census regions; ignore missing
values and use the higher of student and parental expectations if an observation has both.

A primary skill (often unremarked upon) in data analytic work is translation. Your advisor, IR director,
funding agency director — even collaborator — won’t speak to you in the language of R. Instead, it’s up to
you to (1) translate a research question into the discrete steps coding steps necessary to provide an answer,
and then (2) translate the answer such that everyone understands what you’ve found.

What we need to do is some combination of the following:

1. Select the variables we need
2. Mutate a new value that’s the higher of student and parental degree expectations
3. Filter out observations with missing degree expectation values
4. Summarize the data within region to get average degree expectation values
5. Arrange in order so it’s easier to rank and share

Let’s do it!

Select variables (columns)
To choose variables, either when making a new data frame or dropping them, use select(). Like the other
{dplyr} functions we’ll use, the first argument select() takes is the data frame (or tibble) object. After
that, we list the column names we want to keep.

Since we don’t want to overwrite our original data in memory, we’ll create an new object called df_tmp)
## select
df_tmp <- select(df, stu_id, x1stuedexpct, x1paredexpct, x1region)

## show
df_tmp

# A tibble: 23,503 x 4
stu_id x1stuedexpct x1paredexpct x1region
<dbl> <dbl> <dbl> <dbl>

1 10001 8 6 2
2 10002 11 6 1
3 10003 10 10 4
4 10004 10 10 3
5 10005 6 10 3
6 10006 10 8 3
7 10007 8 11 1
8 10008 8 6 1
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9 10009 11 11 3
10 10010 8 6 1
# … with 23,493 more rows

Mutate data into new forms
To add variables and change existing ones, use the mutate() function.

Just like select(), the mutate() function takes the data frame as the first argument, followed by the stuff
we want to do. In this case, the stuff we want to do is add a new column that is the larger of x1stuedexpct
and x1paredexpct. Some pseudocode for making a new column is:
## pseudo code (not to be run)
mutate(<dataframe>, <new_var> = function(<old_var>))

Sometimes, that function() could just be adding a value: mutate(df, col_of_ones = 1).

Quick exercise Without assigning to any object (no <-), type mutate(df, col_of_ones = 1).
What do you get?

Usually the function will be more interesting. In this case we need to choose the bigger of two values. This
is an ideal use case for the ifelse() function, which works like this:
## pseudo code (not to be run)
ifelse(< test >, < return this if TRUE >, < return this if FALSE >)

Using this logic within mutate(), we can test whether each student’s degree expectation is higher than that
of their parent; if true, we’ll put the student’s value into the new variable — if false, we’ll put the parent’s
value into the new variable.
## mutate (notice that we use df_tmp now)
df_tmp <- mutate(df_tmp, high_expct = ifelse(x1stuedexpct > x1paredexpct, # test

x1stuedexpct, # if TRUE
x1paredexpct)) # if FALSE

## show
df_tmp

# A tibble: 23,503 x 5
stu_id x1stuedexpct x1paredexpct x1region high_expct
<dbl> <dbl> <dbl> <dbl> <dbl>

1 10001 8 6 2 8
2 10002 11 6 1 11
3 10003 10 10 4 10
4 10004 10 10 3 10
5 10005 6 10 3 10
6 10006 10 8 3 10
7 10007 8 11 1 11
8 10008 8 6 1 8
9 10009 11 11 3 11

10 10010 8 6 1 8
# … with 23,493 more rows

Doing a quick “ocular test” of our first few rows, it seems like our new variable is correct.
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Quick exercise What happens when the student and parent expectations are the same? Does
our ifelse() statement account for those situations? If so, how?

Filter observations (rows)
## get summary of our new variable
table(df_tmp$high_expct)

-8 1 2 3 4 5 6 7 8 9 10 11
1732 47 1399 110 830 89 2982 169 4257 152 5810 5926

What do these values mean? What’s up with the negative values.

Quick exercise Use the online codebook to figure out what these values mean.

In R, missing values are technically stored as NA. But not all statistical software uses the same values to
represent missing values (for example, Stata uses a dot .) NCES has decided to represent missing values as
a limited number of negative values. In this case, -8 represents a missing value.

How to handle missing values is a very important topic, one we could spend all semester discussing. For
now, we are just going to drop observations with missing values; but be forewarned that how you handle
missing values can have real ramifications for the quality of your final results.
## filter out missing values
df_tmp <- filter(df_tmp, high_expct != -8)

## notice the number of rows now:
## do they equal the first number minus the number of NAs from our table command?
df_tmp

# A tibble: 21,771 x 5
stu_id x1stuedexpct x1paredexpct x1region high_expct
<dbl> <dbl> <dbl> <dbl> <dbl>

1 10001 8 6 2 8
2 10002 11 6 1 11
3 10003 10 10 4 10
4 10004 10 10 3 10
5 10005 6 10 3 10
6 10006 10 8 3 10
7 10007 8 11 1 11
8 10008 8 6 1 8
9 10009 11 11 3 11

10 10010 8 6 1 8
# … with 21,761 more rows

Quick exercise What does the logical operator != mean? How else could we have filtered our
data?

Summarize data
Now we’re ready to get the average. The summarize() command will allow us to apply a summary measure,
like mean(), to a column of our data.
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## get average (without storing)
summarize(df_tmp, high_expct_mean = mean(high_expct))

# A tibble: 1 x 1
high_expct_mean

<dbl>
1 8.48

Overall, we can see that students and parents have high postsecondary expectations on average: to earn
some graduate credential beyond a bachelor’s degree. However, this isn’t what we want. We want the values
across census regions.
## check our census regions
table(df_tmp$x1region)

1 2 3 4
3383 5779 8846 3763

We’re not missing any census data, which is good. To calculate our average expectations, we need to use the
group_by() function. This function allows to set groups and perform other {dpylr} operations within those
groups. Right now, we’ll use it to get our summary.
## get expectations average within region
df_tmp <- group_by(df_tmp, x1region)

## show grouping
df_tmp

# A tibble: 21,771 x 5
# Groups: x1region [4]

stu_id x1stuedexpct x1paredexpct x1region high_expct
<dbl> <dbl> <dbl> <dbl> <dbl>

1 10001 8 6 2 8
2 10002 11 6 1 11
3 10003 10 10 4 10
4 10004 10 10 3 10
5 10005 6 10 3 10
6 10006 10 8 3 10
7 10007 8 11 1 11
8 10008 8 6 1 8
9 10009 11 11 3 11

10 10010 8 6 1 8
# … with 21,761 more rows

Notice the extra row at the second line now? Groups: x1region [4] tells us that our data set is now grouped.

Quick exercise What does the [4] mean?

Now that our groups are set, we can get the summary we really wanted
## get average (without storing)
df_tmp <- summarize(df_tmp, high_expct_mean = mean(high_expct))

## show
df_tmp

# A tibble: 4 x 2
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x1region high_expct_mean
<dbl> <dbl>

1 1 8.62
2 2 8.44
3 3 8.49
4 4 8.42

Success! Expectations are similar across the country, but not the same.

Arrange data
As our final step, we’ll arrange our data frame from highest to lowest (descending). For this, we’ll use
arrange() and a special operator, desc().
## arrange from highest expectations (first row) to lowest
df_tmp <- arrange(df_tmp, desc(high_expct_mean))

## show
df_tmp

# A tibble: 4 x 2
x1region high_expct_mean

<dbl> <dbl>
1 1 8.62
2 3 8.49
3 2 8.44
4 4 8.42

Quick exercise What happens when you don’t include desc() around high_expct_mean?

Write out updated data
We can use this new data frame as a table in its own right or to make a figure. For now, however, we’ll
simply save it using the opposite of read_csv(), write_csv(), which works like writeRDS() we’ve used before.
## write with useful name
write_csv(df_tmp, file.path(dat_dir, "high_expct_mean_region.csv"))

Pipes (%>%)
So far, we’ve performed each step of our analysis piecemeal. This is fine, but a huge benefit of the {tidy-
verse} is that it allows users to chain commands together using pipes.

Tidyverse pipes, %>%, come from the magrittr package.
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Pipes take output from the left side and pipe it to the input of the right side. So sum(x) can be rewritten as
x %>% sum: x outputs itself and the pipe, %>%, makes it the input for sum().

Quick exercise Store 1,000 random values in x: x <- rnorm(1000). Now run sum(x) and x %>%
sum. Do you get the same thing?
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This may be a silly example (why would you do that?), but pipes are powerful because they can be chained
together. Functions can be nested in R, but after too many, the code becomes difficult to parse since it has
to be read from the inside out. For this reason, many analysts run one discrete function after another, saving
output along the way. This is what we did above.

Pipes allow functions to come one after another in the order of the work being done, which is more legible,
but in a connected fashion that is cleaner and, sometimes, faster due to behind-the-scenes processing.

Let’s use Hadley’s canonical example to make the readability comparison between nested functions and piped
functions clearer:
## foo_foo is an instance of a little bunny
foo_foo <- little_bunny()
## adventures in base R must be read from the middle up and backwards
bop_on(

scoop_up(
hop_through(foo_foo, forest),
field_mouse

),
head

)
## adventures w/ pipes start at the top and work down
foo_foo %>%

hop_through(forest) %>%
scoop_up(field_mouse) %>%
bop_on(head)

Rewriting our analysis using pipes
Returning to our example above, let’s connect the steps using pipes. To start off, we can pipe our data to
the select() command:
## pipe the original data frame into select
df_tmp_2 <- df %>%

select(stu_id, x1stuedexpct, x1paredexpct, x1region)

## show
df_tmp_2

# A tibble: 23,503 x 4
stu_id x1stuedexpct x1paredexpct x1region
<dbl> <dbl> <dbl> <dbl>

1 10001 8 6 2
2 10002 11 6 1
3 10003 10 10 4
4 10004 10 10 3
5 10005 6 10 3
6 10006 10 8 3
7 10007 8 11 1
8 10008 8 6 1
9 10009 11 11 3

10 10010 8 6 1
# … with 23,493 more rows

Notice how we didn’t put df inside select()? That’s because df is piped using %>% into the first argument
of select(). Since that’s already accounted for, we can just start with the column names we want.

10

https://twitter.com/_inundata/status/557980236130689024


We can keep the chain going to our next step:
## same as before, but add mutate()
df_tmp_2 <- df %>%

## vars to select
select(stu_id, x1stuedexpct, x1paredexpct, x1region) %>%
## vars to add
mutate(high_expct = ifelse(x1stuedexpct > x1paredexpct, # test

x1stuedexpct, # if TRUE
x1paredexpct)) # if FALSE

## show
df_tmp_2

# A tibble: 23,503 x 5
stu_id x1stuedexpct x1paredexpct x1region high_expct
<dbl> <dbl> <dbl> <dbl> <dbl>

1 10001 8 6 2 8
2 10002 11 6 1 11
3 10003 10 10 4 10
4 10004 10 10 3 10
5 10005 6 10 3 10
6 10006 10 8 3 10
7 10007 8 11 1 11
8 10008 8 6 1 8
9 10009 11 11 3 11

10 10010 8 6 1 8
# … with 23,493 more rows

Notice how I included comments along the way? Since R ignores commented lines (it’s as if they don’t exist),
you can include within your piped chain of commands. This is a good habit that collaborators and future
you will appreciate.

Quick exercise Redo our initial analysis using a single chain. You don’t need to save the
output as a data file with write_csv(), but you should get the same final four-row data frame we
got before. If you want to formally test, you can use the function identical(df_tmp, df_tmp_2)
to see if they are the same.
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