
Data Wrangling III: Working with strings and dates
EDH7916 | Spring 2020

Benjamin Skinner

The data we’ve used so far has been almost entirely numerical. Even when the field represented an expected
level of education, for example, we didn’t see “complete a Bachelor’s degree.” Instead, we saw 6. In the few
cases in which we’ve seen strings or dates, the values have been very regular.

Much education-related data, however, are not this uniform. Particularly when using administrative data,
you are likely to read in columns that contain unstructured strings: names, addresses, dates, etc. Why are
they unstructured? Almost always, the answer is that person who initially inputted the data neither had a
dropdown menu of options to choose from nor separate fields for each part of the data element (e.g., first
name, last name). Instead, they have a blank field in which they type:

Enter name: Isaiah Berlin

Why is this a problem? With an open field, the variations are (often) unlimited:

• I. Berlin
• isaiah berlin
• Berlin, Isaiah

Similarly, the same date can be written any number of ways:

Enter date: February 11, 2020

• 11 February 2020
• 11 Feb 2020
• Feb. 11, 2020
• 2/11/2020 (American)
• 11/2/2020 (most everyone else)
• 2/11/20

Imagine having 1,000 or 1 million rows of such data and needing to pull out only last names or the month.
When data are irregular, that can be an impossible task to do by hand.

To be clear, this is not to impugn those who enter the data. Rather, it’s an acknowledgment that the original
uses of the data we analyze may differ from our own: compliance with an administrative task vs. data input
for statistical analysis, for example.

You won’t always need to work with strings and dates, but when you do, having a few specialty tools in your
toolbox will be greatly beneficial. Sometimes they can mean the difference between being able vs. unable to
answer your question.

Setup
As before, we’ll continue working within the {tidyverse}. We’ll focus, however, on using two specific libraries:

• {stringr} for strings
• {lubridate} for dates

1

https://en.wikipedia.org/wiki/Date_and_time_notation_in_the_United_States
https://stringr.tidyverse.org
https://lubridate.tidyverse.org

You may have noticed already that when we load the {tidyverse} library with library(tidyverse), the
{stringr} library is already loaded. The {lubridate} library, though part of the {tidyverse}, is not. We need
to load it separately.

libraries

NB: The {stringr} library is loaded with {tidyverse}, but
{lubridate} is not, so we need to load it separately

library(tidyverse)

── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──

✔ ggplot2 3.3.0 ✔ purrr 0.3.4
✔ tibble 3.0.1 ✔ dplyr 0.8.5
✔ tidyr 1.0.2 ✔ stringr 1.4.0
✔ readr 1.3.1 ✔ forcats 0.5.0

── Conflicts ── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()

library(lubridate)

Attaching package: 'lubridate'

The following objects are masked from 'package:dplyr':

intersect, setdiff, union

The following objects are masked from 'package:base':

date, intersect, setdiff, union

NB: As we have done in the past few lessons, we’ll run this script assuming that our working directory is
set to the scripts directory.

directory paths

assume we're running this script from the ./scripts subdirectory
dat_dir <- file.path("..", "data")

Part 1: Working with strings
To practice working with strings, we’ll use data from Integrated Postsecondary Education Data System
(IPEDS):

The National Center for Education Statistics (NCES) administers the Integrated Postsecondary
Education Data System (IPEDS), which is a large-scale survey that collects institution-level data
from postsecondary institutions in the United States (50 states and the District of Columbia) and
other U.S. jurisdictions. IPEDS defines a postsecondary institution as an organization that is
open to the public and has the provision of postsecondary education or training beyond the
high school level as one of its primary missions. This definition includes institutions that offer

2

https://nces.ed.gov/ipeds/
https://nces.ed.gov/ipeds/

academic, vocational and continuing professional education programs and excludes institutions
that offer only avocational (leisure) and adult basic education programs. Definitions for other
terms used in this report may be found in the IPEDS online glossary.

NCES annually releases national-level statistics on postsecondary institutions based on the
IPEDS data. National statistics include tuition and fees, number and types of degrees and
certificates conferred, number of students applying and enrolled, number of employees, financial
statistics, graduation rates, student outcomes, student financial aid, and academic libraries.

You can find more information about IPEDS here. As higher education scholars, IPEDS data are a valuable
resource that you may often turn to (I do).

We’ll use one file (which can be found here), that covers institutional characteristics for one year:

• Directory information, 2007 (hd2007.csv)

input

read in data and lower all names using rename_all(tolower)
df <- read_csv(file.path(dat_dir, "hd2007.csv")) %>%

rename_all(tolower)

Parsed with column specification:
cols(

.default = col_double(),
INSTNM = col_character(),
ADDR = col_character(),
CITY = col_character(),
STABBR = col_character(),
ZIP = col_character(),
CHFNM = col_character(),
CHFTITLE = col_character(),
EIN = col_character(),
OPEID = col_character(),
WEBADDR = col_character(),
ADMINURL = col_character(),
FAIDURL = col_character(),
APPLURL = col_character(),
ACT = col_character(),
CLOSEDAT = col_character(),
IALIAS = col_character()

)

See spec(...) for full column specifications.

Finding: str_detect()

So far, we’ve filtered data using {dplyr}’s filter() verb. When matching a string, we have used == (or !=
for negative match). For example, if we wanted to limit our data to only those institutions in Florida, we
could filter using the stabbr column:
filter using state abbreviation (not saving, just viewing)
df %>%

filter(stabbr == "FL")

3

https://nces.ed.gov/ipeds/ReportYourData/IpedsSurveyMethodology
https://nces.ed.gov/ipeds/datacenter/DataFiles.aspx

A tibble: 316 x 59
unitid instnm addr city stabbr zip fips obereg chfnm chftitle gentele
<dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <dbl>

1 132268 Wyote… 470 … Ormo… FL 32174 12 5 Stev… Preside… 3.86e12
2 132338 The A… 1799… Fort… FL 3331… 12 5 Char… Preside… 9.54e13
3 132374 Atlan… 4700… Coco… FL 3306… 12 5 Robe… Director 7.54e 9
4 132408 The B… 5400… Grac… FL 32440 12 5 Thom… Preside… 8.50e 9
5 132471 Barry… 1130… Miami FL 3316… 12 5 Sist… Preside… 8.01e 9
6 132523 Goodi… 615 … Pana… FL 32401 12 5 Dr. … CRNA Ph… 8.51e 9
7 132602 Bethu… 640 … Dayt… FL 3211… 12 5 Dr T… Preside… 3.86e 9
8 132657 Lynn … 3601… Boca… FL 3343… 12 5 Kevi… Preside… 5.61e 9
9 132666 Brade… 5505… Brad… FL 34209 12 5 A. P… CEO 9.42e 9

10 132675 Bradf… 609 … Star… FL 32091 12 5 Rand… Director 9.05e 9
… with 306 more rows, and 48 more variables: ein <chr>, opeid <chr>,
opeflag <dbl>, webaddr <chr>, adminurl <chr>, faidurl <chr>, applurl <chr>,
sector <dbl>, iclevel <dbl>, control <dbl>, hloffer <dbl>, ugoffer <dbl>,
groffer <dbl>, fpoffer <dbl>, hdegoffr <dbl>, deggrant <dbl>, hbcu <dbl>,
hospital <dbl>, medical <dbl>, tribal <dbl>, locale <dbl>, openpubl <dbl>,
act <chr>, newid <dbl>, deathyr <dbl>, closedat <chr>, cyactive <dbl>,
postsec <dbl>, pseflag <dbl>, pset4flg <dbl>, rptmth <dbl>, ialias <chr>,
instcat <dbl>, ccbasic <dbl>, ccipug <dbl>, ccipgrad <dbl>, ccugprof <dbl>,
ccenrprf <dbl>, ccsizset <dbl>, carnegie <dbl>, tenursys <dbl>,
landgrnt <dbl>, instsize <dbl>, cbsa <dbl>, cbsatype <dbl>, csa <dbl>,
necta <dbl>, dfrcgid <dbl>

This works well because the stabbr column, even though it uses strings, is regular. But what happens when
the strings aren’t so regular? For example, let’s look the different titles chief college administrators take.
see first few rows of distinct chief titles
df %>%

distinct(chftitle)

A tibble: 556 x 1
chftitle
<chr>

1 Commandant
2 President
3 Chancellor
4 Interim President
5 CEO
6 Acting President
7 Director
8 President/CEO
9 Interim Chancellor

10 President/COO
… with 546 more rows

We find over 500 unique titles. Just looking at the first 10 rows, we see that some titles are pretty similar
— President vs. CEO vs. President/CEO — but not exactly the same. Let’s look again, but this time get
counts of each distinct title and arrange from most common to least.
return the most common titles
df %>%

get counts of each type
count(chftitle) %>%
arrange in descending order so we see most popular at top

4

arrange(desc(n))

A tibble: 556 x 2
chftitle n
<chr> <int>

1 President 3840
2 Director 560
3 Chancellor 265
4 Executive Director 209
5 Owner 164
6 Campus President 116
7 Superintendent 105
8 CEO 90
9 <NA> 85

10 Interim President 75
… with 546 more rows

Quick exercise What do you notice about the data frames returned by distinct() and
count()? What’s the same? What does count() do that distinct() does not?

Getting our counts and arranging, we can see that President is by far the most common title. That said, we
also see Campus President and Interim President (and before we saw Acting President as well).

If your research question asked, how many chief administrators use the title of “President”? regardless the
various iterations, you can’t really use a simple == filter any more. In theory, you could inspect your data,
find the unique versions, get counts of each of those using ==, and then sum them up — but that’s a lot of
work!

Instead, we can use the stringr function str_detect(), which looks for a pattern — in our case “President”
— anywhere in the title.
how many use some form of the title president?
df %>%

still starting with our count
count(chftitle) %>%
...but keeping only those titles that contain "President"
filter(str_detect(chftitle, "President")) %>%
arranging as before
arrange(desc(n))

A tibble: 173 x 2
chftitle n
<chr> <int>

1 President 3840
2 Campus President 116
3 Interim President 75
4 President/COO 47
5 President/CEO 46
6 School President 31
7 Vice President 29
8 President and CEO 17
9 College President 15

10 President & CEO 14
… with 163 more rows

5

Now we’re seeing many more versions. We can even more clearly see a few titles that are almost certainly
the same title, but were just inputted differently — President/CEO vs. President and CEO vs. President &
CEO.

Quick exercise Ignoring the sub-counts of the various versions, how many chief administrators
have the word “President” in their title?

Seeing the different versions of basically the same title should have us stopping to think: since it seems that
this data column contains free form input (e.g. Input chief administrator title:), maybe we should allow
for typos? The easiest: Is there any reason to assume that “President” will be capitalized?

Quick exercise What happens if we search for “president” with a lowercase “p”?

Ah! We find a few stragglers. How can we restructure our filter so that we get these, too? There are at least
two solutions.

1. Use regular expressions

Regular expressions (aka regex) are special strings that use a particular syntax to create patterns that can
be used to match other strings. They are very useful when you need to match strings that have some general
form, but may differ in specifics.

We already used this technique in the last lesson when we matched columns in the all_schools_wide.csv
with contains("19") so that we could pivot_longer(). Instead of naming all the columns specifically, we
recognized that each column took the form of <test>_19<YY>. This is a type of regular expression.

In the {tidyverse} some of the {stringr} and {tidyselect} helper functions abstract-away some of the nitty-
gritty behind regular expressions. Knowing a little about regular expression syntax, particularly how it is
used in R, can go a long way.

In our first case, we can match strings that have a capital P President or lowercase p president using square
brackets ([]). If we want either “P” or “p”, then we can use the regex, [Pp], in place of the first character:
"[Pp]resident". This will match either “President” or “president”.
solution 1: look for either P or p
df %>%

count(chftitle) %>%
filter(str_detect(chftitle, "[Pp]resident")) %>%
arrange(desc(n))

A tibble: 175 x 2
chftitle n
<chr> <int>

1 President 3840
2 Campus President 116
3 Interim President 75
4 President/COO 47
5 President/CEO 46
6 School President 31
7 Vice President 29
8 President and CEO 17
9 College President 15

10 President & CEO 14
… with 165 more rows

6

https://en.wikipedia.org/wiki/Regular_expression
https://www.rdocumentation.org/packages/tidyselect/versions/1.0.0/topics/select_helpers
https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html

2. Put everything in the same case and match with that case

Another solution, which is probably much easier in this particular case, is to set all potential values in
chftitle to the same case and then match using that case. In many situations, this is preferable since you
don’t need to guess cases up front.

We won’t change the values in chftitle permanently — only while filtering. To compare apples to apples
(rather than Apples to apples), we’ll wrap our column name with the function str_to_lower(), which will
make character lowercase, and match using lowercase "president".
solution 2: make everything lowercase so that case doesn't matter
df %>%

count(chftitle) %>%
filter(str_detect(str_to_lower(chftitle), "president")) %>%
arrange(desc(n))

A tibble: 177 x 2
chftitle n
<chr> <int>

1 President 3840
2 Campus President 116
3 Interim President 75
4 President/COO 47
5 President/CEO 46
6 School President 31
7 Vice President 29
8 President and CEO 17
9 College President 15

10 President & CEO 14
… with 167 more rows

We recover an additional two titles when using this second solution. Clearly, our first solution didn’t account
for other cases (perhaps PRESIDENT?).

In general, I find it’s a good idea to try a solution like the second one before a more complicated one like
the first. But because every problem is different, so too are the solutions. You may find yourself using a
combination of the two.

Not-so-quick exercise Another chief title that was high on the list was “Owner.” How many
institutions have an “Owner” as their chief administrator? Of these, how many are private,
for-profit institutions (control == 3)? How many have the word “Beauty” in their name?

Replace using string position: str_sub()

In addition to filtering data, we sometimes need to create new variables from pieces of exiting variables. For
example, let’s look at the zip code values that are included in the file.
show first few zip code values
df %>%

select(unitid, zip)

A tibble: 7,052 x 2
unitid zip
<dbl> <chr>

1 100636 36112-6613
2 100654 35762

7

3 100663 35294-0110
4 100690 36117-3553
5 100706 35899
6 100724 36101-0271
7 100733 35401
8 100751 35487-0166
9 100760 35010

10 100812 35611
… with 7,042 more rows

We can see that we have both regular 5 digit zip codes as well as those that include the extra 4 digits (ZIP+4).
Let’s say we don’t need those last four digits for our analysis (particularly because not every school uses
them anyway). Our task is to create a new column that pulls out only the main part of the zip code. It is
has to work both for zip values that include the additional hyphen and 4 digits as well as those that only
have the primary 5 digits to begin with.

One solution in this case is to take advantage of the fact that zip codes — minus the sometimes extra 4
digits — should be regular: 5 digits. If want the sub-part of a string and that sub-part is always in the same
spot, we can use the function, str_sub(), which takes a string or column name first, and has arguments for
the starting and ending character that mark the sub-string of interest.

In our case, we want the first 5 digits so we should start == 1 and end == 5:
pull out first 5 digits of zip code
df <- df %>%

mutate(zip5 = str_sub(zip, start = 1, end = 5))

show (use select() to subset so we can set new columns)
df %>%

select(unitid, zip, zip5)

A tibble: 7,052 x 3
unitid zip zip5
<dbl> <chr> <chr>

1 100636 36112-6613 36112
2 100654 35762 35762
3 100663 35294-0110 35294
4 100690 36117-3553 36117
5 100706 35899 35899
6 100724 36101-0271 36101
7 100733 35401 35401
8 100751 35487-0166 35487
9 100760 35010 35010

10 100812 35611 35611
… with 7,042 more rows

A quick visual inspection of the first few rows shows that our str_sub() function performed as expected (for
a real analysis, you’ll want to do more formal checks).

Replace using regular expressions: str_replace()

We can also use a more sophisticated regex pattern with the function str_replace(). The pieces of our regex
pattern, "([0-9]+)(-[0-9]+)?", are translated as this:

• [0-9] := any digit, 0 1 2 3 4 5 6 7 8 9
• + := match the preceding one or more times
• ? := match the preceding 0 or more times

8

• () := subexpression

Put together, we have:

• ([0-9]+) := first, look for 1 or more digits
• (-[0-9]+)? := second, look for a hyphen and one or more digits, but you may not find any of that

Because we used parentheses, (), to separate our subexpressions, we can call them using their numbers (in
order) in the last argument of str_replace():

• "\\1" := return the first subexpression

So what’s happening? If given a zip code that is "32605", the regex pattern will collect each digit — "3" "2"
"6" "0" "5" — into the first subexpression because it never sees a hyphen. That first subexpression, "\\1",
is returned: "32605". That’s what we want.

If given "32605-1234", it will collect the first 5 digits in the first subexpression, but will stop adding characters
there when it sees the hyphen. From then on out, it adds everything it sees the second subexpression: "-"
"1" "2" "3" "4". But because str_replace() only returns the first subexpression, we still get the same answer:
"32605". This is what we want.

Let’s try it on the data.
drop last four digits of extended zip code if they exist
df <- df %>%

mutate(zip5_v2 = str_replace(zip, "([0-9]+)(-[0-9]+)?", "\\1"))

show (use select() to subset so we can set new columns)
df %>%

select(unitid, zip, zip5, zip5_v2)

A tibble: 7,052 x 4
unitid zip zip5 zip5_v2
<dbl> <chr> <chr> <chr>

1 100636 36112-6613 36112 36112
2 100654 35762 35762 35762
3 100663 35294-0110 35294 35294
4 100690 36117-3553 36117 36117
5 100706 35899 35899 35899
6 100724 36101-0271 36101 36101
7 100733 35401 35401 35401
8 100751 35487-0166 35487 35487
9 100760 35010 35010 35010

10 100812 35611 35611 35611
… with 7,042 more rows

Quick exercise What if you wanted to the get the last 4 digits (after the hyphen)? What
bit of two bits of code above would you change so that you can store the last 4 digits without
including the hyphen? Make a new variable called zip_plus4 and store these values. HINT Look
at the help file for str_replace().

Let’s compare our two versions: do we get the same results?
check if both versions of new zip column are equal
identical(df %>% select(zip5), df %>% select(zip5_v2))

[1] FALSE

9

No! Let’s see where they are different:
filter to rows where zip5 != zip5_v2 (not storing...just looking)
df %>%

filter(zip5 != zip5_v2) %>%
select(unitid, zip, zip5, zip5_v2)

A tibble: 4 x 4
unitid zip zip5 zip5_v2
<dbl> <chr> <chr> <chr>

1 108199 90015--350 90015 90015--350
2 113953 92113--191 92113 92113--191
3 431707 06360--709 06360 06360--709
4 435240 551012595 55101 551012595

Quick exercise What happened? In this scenario, which string subsetting technique worked
better?

Depending on the task, regular expressions can either feel like a blessing or a curse. To be honest, I’ve spent
more time cursing than thanking them. That said, regular expressions are often the only way to perform a
data wrangling task on unstructured string data. They are also a cornerstone of natural language processing
techniques, which are increasingly of interest to education researchers.

We’ve only scratched the surface of what regular expressions can do. If you face string data in the future,
taking a little time to craft a regular expression can be well worth it.

Part 2: Working with dates
In opening section, we’ve seen that dates often come in many different formats. While you can format and
clean them using regular expressions, you may also want to format them such that R knows they are dates.

Why?

When dealing with something straightforward like years, it’s easy enough to store the years a regular numbers
and then subtract the recent year from the past year to get a duration: 2020 - 2002 equals 18 years.

But what if you have daily data for the school year and you want to know how many days a student had
between a first and second test? What if the differences were more than a month of days and every student
took the first and second tests on different days? What if you had a panel data set, with students across
years, some of which were leap years? You can see how calculating the exact number days between tests for
each student could quickly become difficult if trying to do it using regular numerical values.

R makes this easier by having special time-based data types that will keep track of these issues for us and
allow us to work with dates almost as we do with regular numbers.

In our IPEDS data set, we can see that few institutions closed in 2007 and 2008. We’ll limit our next analyses
to these institutions.
subset to schools who closed during this period
df <- df %>%

filter(closedat != -2)

show first few rows
df %>% select(unitid, instnm, closedat)

A tibble: 83 x 3
unitid instnm closedat

10

<dbl> <chr> <chr>
1 103440 Sheldon Jackson College 6/29/07
2 104522 DeVoe College of Beauty 3/29/08
3 105242 Mundus Institute Sep-07
4 105880 Long Technical College-East Valley 3/31/07
5 119711 New College of California Jan-08
6 136996 Ross Medical Education Center 7/31/07
7 137625 Suncoast II the Tampa Bay School of Massage Therapy LLC 5/31/08
8 141583 Hawaii Business College Sep-07
9 150127 Ball Memorial Hospital School of Radiologic Technology May-07

10 160144 Pat Goins Shreveport Beauty School 3/1/08
… with 73 more rows

We can see that closedat is stored as a string. Based on our domain knowledge and context clues, we know
that the dates are generally in a MM/DD/YYYY (American) format.

We can use the {lubridate} command mdy() to make a new variable that contains the same information, but
in a format that R recognizes as a date.
create a new close date column
df <- df %>%

mutate(closedat_dt = mdy(closedat))

Warning: 35 failed to parse.

show
df %>% select(starts_with("close"))

A tibble: 83 x 2
closedat closedat_dt
<chr> <date>

1 6/29/07 2007-06-29
2 3/29/08 2008-03-29
3 Sep-07 NA
4 3/31/07 2007-03-31
5 Jan-08 NA
6 7/31/07 2007-07-31
7 5/31/08 2008-05-31
8 Sep-07 NA
9 May-07 NA

10 3/1/08 2008-03-01
… with 73 more rows

Well, we are part of the way there. It seems that mdy() didn’t really work with dates like Sep-2007. What
can we do?

One solution is to add in a fake day for the ones that didn’t parse and then convert using mdy(). We’ll use
regular expressions with an str_replace().
convert MON-YYYY to MON-01-YYYY
df <- df %>%

mutate(closedat_fix = str_replace(closedat, "-", "-01-"),
closedat_fix_dt = mdy(closedat_fix))

Warning: 7 failed to parse.

show
df %>% select(starts_with("close"))

11

A tibble: 83 x 4
closedat closedat_dt closedat_fix closedat_fix_dt
<chr> <date> <chr> <date>

1 6/29/07 2007-06-29 6/29/07 2007-06-29
2 3/29/08 2008-03-29 3/29/08 2008-03-29
3 Sep-07 NA Sep-01-07 2007-09-01
4 3/31/07 2007-03-31 3/31/07 2007-03-31
5 Jan-08 NA Jan-01-08 2008-01-01
6 7/31/07 2007-07-31 7/31/07 2007-07-31
7 5/31/08 2008-05-31 5/31/08 2008-05-31
8 Sep-07 NA Sep-01-07 2007-09-01
9 May-07 NA May-01-07 2007-05-01

10 3/1/08 2008-03-01 3/1/08 2008-03-01
… with 73 more rows

Quick exercise We had 7 parsing errors. Can you figure out which rows failed to parse and
guess why? HINT if mdy() failed to parse closedat, then the subsequent new columns are likely
missing values.

Now that we’ve successfully converted the string date into a proper date type, it’s easy to pull out the pieces
of that date, including:

• year with year()
• month with month()
• day with day()
• day of week with wday()

add columns for
- year
- month
- day
- day of week (dow)
df <- df %>%

mutate(close_year = year(closedat_fix_dt),
close_month = month(closedat_fix_dt),
close_day = day(closedat_fix_dt),
close_dow = wday(closedat_fix_dt, label = TRUE))

show
df %>%

select(closedat_fix_dt, close_year, close_month, close_day, close_dow)

A tibble: 83 x 5
closedat_fix_dt close_year close_month close_day close_dow
<date> <dbl> <dbl> <int> <ord>

1 2007-06-29 2007 6 29 Fri
2 2008-03-29 2008 3 29 Sat
3 2007-09-01 2007 9 1 Sat
4 2007-03-31 2007 3 31 Sat
5 2008-01-01 2008 1 1 Tue
6 2007-07-31 2007 7 31 Tue
7 2008-05-31 2008 5 31 Sat
8 2007-09-01 2007 9 1 Sat
9 2007-05-01 2007 5 1 Tue

10 2008-03-01 2008 3 1 Sat

12

… with 73 more rows

Quick exercise Can we trust our close_dow variable? Why?
how long since the institution closed
- as of 1 January 2020
- as of today
df <- df %>%

mutate(time_since_close_jan = ymd("2020-01-01") - closedat_fix_dt,
time_since_close_now = today() - closedat_fix_dt)

show
df %>% select(starts_with("time_since_close"))

A tibble: 83 x 2
time_since_close_jan time_since_close_now
<drtn> <drtn>

1 4569 days 4695 days
2 4295 days 4421 days
3 4505 days 4631 days
4 4659 days 4785 days
5 4383 days 4509 days
6 4537 days 4663 days
7 4232 days 4358 days
8 4505 days 4631 days
9 4628 days 4754 days

10 4323 days 4449 days
… with 73 more rows

As with strings and regular expressions, we’ve only scratched the surface of working with dates in R. For
example, you can also work with times (hours, minutes, seconds, etc). Now that you’ve been introduced,
however, you should have a starting point for working with panel and administrative data that includes
strings and dates that you need to process before conducting your analyses.

13

	Setup
	Part 1: Working with strings
	Finding: str_detect()
	1. Use regular expressions
	2. Put everything in the same case and match with that case
	Replace using string position: str_sub()
	Replace using regular expressions: str_replace()

	Part 2: Working with dates

