Data Wrangling II: Appending, joining, and reshaping data
EDH7916 | Spring 2020

Benjamin Skinner

So far, we have only worked with single data files: we read in a file, wrangled our data, and, sometimes,
outputted a new file. But very often, a key aspect of the data wrangling workflow is to combine more than one
data set together. This may include appending new rows to an existing data frame in memory or joining
two data sets together using a common key value found in both. Another key data manipulation task is
to reshape our data, pivoting from wide to long form (or vice versa). We’ll go through each individually
below.

Setup

As always, we begin by reading in the {tidyverse} library and assigning our paths to macros we can reuse be-
low. Notice that we have a new subdirectory in our data directory: sch_test, which has a subdirectory called
by_school. These fake data represent test scores across three subjects — math, reading, and science — across
four schools over six years. The two files in sch_test directory, all_schools.csv and all_schools_wide.csv,
represent the same data, but in different formats. We’ll use these data sets to practice appending, joining,
and reshaping.

|__ data/
|— «us
|__ sch_test/
|-— all_schools.csv
|-— all_schools_wide.csv
|__ by_school/
|-— bend_gate_1980.csv
|— bend_gate_1980.csv
[oas
|-— spottsville_1985.csv
##
libraries
##

library(tidyverse)

— Attaching packages tidyverse 1.3.0 —

v ggplot2 3.3.0
v tibble 3.0.1
v tidyr 1.0.2
v readr 1.3.1

purrr 0.3.4
dplyr 0.8.5
stringr 1.4.0
forcats 0.5.0

L Y R N N

— Conflicts tidyverse_conflicts() —
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

NB: As we did in the past lesson, we run this script assuming that our working directory is set to the scripts
directory.

##
directory paths
##

assume we're running this script from the ./scripts subdirectory
dat_dir <- file.path("..", "data")

sch_dir <- file.path(dat_dir, "sch_test")

bys_dir <- file.path(sch_dir, "by_school™)

Appending data

Our first task is the most straightforward. When appending data, we are simply adding similarly structured
rows to an exiting data frame. What do I mean by similarly structured? Imagine you have a data frame
that looks like this:

id year score
A 2020 98
B 2020 95
C 2020 85
D 2020 94

Now, assume you are given data that look like this:

id year score

E 2020 99
F 2020 90

These data are similarly structured: same column names in the same order. If we know that the data
came from the same process (e.g., ids represent students in the same classroom with each file representing
a different test day), then we can safely append the second to the first:

id year score
A 2020 98
B 2020 95
C 2020 85
D 2020 94
E 2020 99
F 2020 90

Data that are the result of the exact same data collecting process across locations or time may be appendable.
In education research, administrative data are often recorded each term or year, meaning you can build a
panel data set by appending. The NCES IPEDS data files generally work like this, too.

Quick exercise While appending data can be straightforward, it can also be dangerous. What
do you think I mean by that? Think of some situations in which appending data frames may not

be a good idea.

Example

Let’s practice with an example. First, we’ll read in three data files from the by_school directory.
##
input
#H#

read in data
df_1 <- read_csv(file.path(bys_dir, "bend_gate_1980.csv"))

Parsed with column specification:
cols(
school = col_character(),

year = col_double(),
math = col_double(),
read = col_double(),

science = col_double()
)

df_2 <- read_csv(file.path(bys_dir, "bend_gate_1981.csv"))

Parsed with column specification:
cols(

school = col_character(),

year = col_double(),

math = col_double(),

read = col_double(),

science = col_double()
)

df_3 <- read_csv(file.path(bys_dir, "bend_gate_1982.csv"))

Parsed with column specification:
cols(

school = col_character(),

year = col_double(),

math = col_double(),

read = col_double(),

science = col_double()

)

Looking at each, we can see that they are similarly structured.

##
process
##

show
df_1

A tibble: 1 x 5

school year math read science
<chr> <db1l> <dbl> <dbl> <dbl>
1 Bend Gate 1980 515 281 808

df_2

A tibble: 1 x 5

school year math read science
<chr> <dbl> <db1l> <dbl> <dbl>
1 Bend Gate 1981 503 312 814
df_3

A tibble: 1 x 5

school year math read science
<chr> <dbl> <dbl> <dbl> <dbl>
1 Bend Gate 1982 514 316 816

From tidyverse’s {dplyr} library, we use bind_rows() to append the second and third first to the first.

append files
df <- bind_rows(df_1, df_2, df_3)

show
df

A tibble: 3 x 5

school year math read science

<chr> <db1l> <dbl> <dbl> <dbl>
1 Bend Gate 1980 515 281 808
2 Bend Gate 1981 503 312 814
3 Bend Gate 1982 514 316 816
That’s it!

Quick exercise Read in the rest of the files for Bend Gate and append them to the current
data frame.

Joining data

More often than appending your data files, however, you will need to merge or join them. With a join, you
are adding new columns (new variables) to your data frame that come from a second data frame. The key
difference between joining and appending is that a join requires a key, that is, a variable or index common
to each data frame that’s used to line everything up.

For example, say you have these two data sets,

id sch year score
A 1 2020 98
B 1 2020 95
CcC 2 2020 85
D 3 2020 94
sch type

1 elementary

2 middle

3 high

https://dplyr.tidyverse.org/reference/bind.html

and you want to add the school type to the first data set. You can do this because you have a common key
between each set: sch. A pseudocode description on this join would be:

1. Add a column to the first data frame called type
2. Fill in each row of the new column with the type value that corresponds to the matching sch value in

both data frames:

The end result

e sSC
e sch
e sch

Example

== 1 ——> elementary
== 2 —-—> middle
== 3 ——> high

would then look like this:

id sch year score type

A 1 2020 98 elementary
B 1 2020 95 elementary
Cc 2 2020 85 middle

D 3 2020 94 high

A common join task in education research involves adding group-level aggregate statistics to individual
observations: for example, adding school-level average test scores to each student’s row. With a panel data
set (observations across time), we might want averages across all groups within each year added to each unit
by time period row. Let’s do the second, adding within-year across school average test scores to each school
by year observation.

#H#
1inpu

t

#it

read in data
df <- read_csv(file.path(sch_dir, "all_schools.csv"))

Parsed with column specification:

cols(

school = col_character(),

year
math
read

col_double(),
col_double(),
col_double(),

science = col_double()

)

Looking at the data, we see that it’s similar to what we’ve seen above, with additional schools.

show
df
A tibble: 24 x 5
school year
<chr> <db1>
1 Bend Gate 1980
2 Bend Gate 1981
3 Bend Gate 1982
4 Bend Gate 1983
5 Bend Gate 1984
6 Bend Gate 1985

math
<db1l>
515
503
514
491
502
488

read science

<db1>
281
312
316
276
310
280

<db1l>
808
814
816
793
788
789

7 East Heights 1980 501 318 782

8 East Heights 1981 487 323 813
9 East Heights 1982 496 294 818
10 East Heights 1983 497 306 795

.. with 14 more rows
Our task is two-fold:
1. Get the average of each test score within year and save in object.

2. Join the new summary data frame to the original data frame.

1. Get summary

##
process
##

get test score summary within year
df_sum <- df %>%
group_by(year) %>%
summarize(math_m = mean(math),
read_m = mean(read),
science_m = mean(science))

show
df_sum

A tibble: 6 x 4
year math_m read_m science_m
<dbl> <dbl> <dbl> <db1>

1 1980 507 295. 798.

2 1981 496. 293. 788.

3 1982 506 302. 802.

4 1983 500 293. 794.

5 1984 490 300. 792.

6 1985 500. 290. 794.
Quick exercise Thinking ahead, why do you think we created new names for the summarized
columns? Why the _m ending?

2. Join

While one can merge using base R, {dplyr} uses the SQL language of joins, which can be conceptually clearer.
Here are the most common joins you will use:

o left_join(x, y): keep all x, drop unmatched y
e right_join(x, y): keep all y, drop unmatched x
e inner_join(x, y): keep only matching

e full_join(x, y): keep everything

https://stat.ethz.ch/R-manual/R-devel/library/base/html/merge.html
https://en.wikipedia.org/wiki/Join_(SQL)

@ ®

Left Join Right Join
Inner Join Full Join

Since we want to join a smaller aggregated data frame, df_sum, to the original data frame, df, we’ll use a
left_join(). The join functions will try to guess the joining variable (and tell you what it picked) if you
don’t supply one, but we’ll specify one to be clear.
df_joined <- df %>%

left_join(df_sum, by = "year")

show
df_joined

A tibble: 24 x 8

school year math read science math_m read_m science_m

<chr> <dbl> <db1l> <dbl> <dbl> <dbl> <dbl> <db1>
1 Bend Gate 1980 515 281 808 507 295. 798.
2 Bend Gate 1981 503 312 814 496. 293. 788.
3 Bend Gate 1982 514 316 816 506 302. 802.
4 Bend Gate 1983 491 276 793 500 293. 794.
5 Bend Gate 1984 502 310 788 490 300. 792.
6 Bend Gate 1985 488 280 789 500. 290. 794.
7 East Heights 1980 501 318 782 507 295. 798.
8 East Heights 1981 487 323 813 496. 293. 788.
9 East Heights 1982 496 294 818 506 302. 802.
10 East Heights 1983 497 306 795 500 293. 794.

.. with 14 more rows

Quick exercise Look at the first 10 rows of df_joined. What do you notice about the new
summary columns we added?

Reshaping data

Reshaping data is a common data wrangling task. Whether going from wide to long format or long to wide,
it can be a painful process. But with a little practice, the ability to reshape data will become a powerful

https://en.wikipedia.org/wiki/Wide_and_narrow_data

tool in your toolbox.

Definitions

While there are various definitions of tabular data structure, the two you will most often come across are
wide and long. Wide data are data structures in which all variable/values are columns. At the extreme
end, every ¢d will only have a single row:

id math score 2019 read_score 2019 math score 2020 read score 2020

A 93 88 92 98
B 99 92 97 95
C 89 88 84 85

Notice how each particular score (by year) has its own column? Compare this to long data in which each
observational unit (id test score within a given year) will have a row:

id year test score
A 2019 math 93
A 2019 read 88
A 2020 math 92
A 2020 read 98
B 2019 math 99
B 2019 read 92
B 2020 math 97
B 2020 read 95
C 2019 math 89
C 2019 read 88
C 2020 math 84
C 2020 read 85

The first wide and second long table present the same information in a different format. So why bother
reshaping? The short answer is that you sometimes need one format and sometimes the other due to the
demands of the analysis you want to run, the figure you want to plot, or the table you want to make.

NB: Data in the wild are often some combination of these two types: wide-ish or long-ish. For an example,
see our all_schools.csv data below, which is wide in some variables (test), but long in others (year). The
point of defining long vs wide is not to have a testable definition, but rather to have a framework for thinking
about how your data are structured and if that structure will work for your data analysis needs.

Example: wide —> long

To start, we’ll go back to the all_schools.csv file.
##
input
#H#

reading again just to be sure we have the original data
df <- read_csv(file.path(sch_dir, "all_schools.csv"))

Parsed with column specification:
cols(
school = col_character(),

year = col_double()
math = col_double()
read = col_double()
science = col_doubl

)

Notice how the data are wide in test: each school has one row per year, but each test gets its own column.
While this setup can be efficient for storage, it’s not always the best for analysis or even just browsing. What
we want is for the data to be long.

e()

Instead of each test having its own column, we would like to make the data look like our long data example
above, with each row representing a single school, year, test, score:

school year test score
Bend Gate 1980 math 515
Bend Gate 1980 read 281

Bend Gate 1980 science 808

As with joins, you can reshape data frames using base R commands. But again, we’ll tidyverse functions in
the tidyr library. Specifically, we’ll rely on the {tidyr} pivot_longer() and pivot_wider() commands.

pivot_longer()
The pivot_longer() function can take a number of arguments, but the core things it needs to know are:

o data: the name of the data frame you’re reshaping (we can use %>% to pipe in the data name)

e cols: the names of the columns you want to pivot into values of a single new column (thereby making
the data frame “longer”)

e names_to: the name of the new column that will contain the names of the cols you just listed

o values_to: the name of the column where the values in the cols you listed will go

In our current situation, our cols to pivot are "math", "read", and "science". Since they are test types, we’ll
call our names_to column "test" and our values_to column "score".

##
process
#H#

wide to long
df_long <- df %>%
pivot_longer(cols = c("math","read","science"),
names_to = "test",
values_to = "score")

show
df_long

A tibble: 72 x 4

school year test score

<chr> <dbl> <chr> <dbl>
1 Bend Gate 1980 math 515
2 Bend Gate 1980 read 281
3 Bend Gate 1980 science 808
4 Bend Gate 1981 math 503
5 Bend Gate 1981 read 312

https://stats.idre.ucla.edu/r/faq/how-can-i-reshape-my-data-in-r/
http://tidyr.tidyverse.org

6 Bend Gate 1981 science
7 Bend Gate 1982 math
8 Bend Gate 1982 read
9 Bend Gate 1982 science
10 Bend Gate 1983 math

.. with 62 more rows

Quick (ocular test) exercise How many rows did our initial data frame df have? How many
unique tests did we have in each year? When reshaping from wide to long, how many rows should
we expect our new data frame to have? Does our new data frame have that many rows?

814
514
316
816
491

Example: long —> wide

pivot_wider()

Now that we have our long data, let’s reshape it back to wide format using pivot_wider().
we’re doing just the opposite from before — here are the main arguments you need to attend to:

o data: the name of the data frame you’re reshaping (we can use %>% to pipe in the data name)

e names_from: the name of the column that contains the values which will become new column names

e values_from: the name of the column that contains the values associated with the values in names_from
column; these will go into the new columns.

##
process
##

long to wide

df_wide <- df_long %>%

pivot_wider(names_from = "test",
values_from = "score")
show
df_wide

A tibble: 24 x 5

school year

<chr> <db1>
1 Bend Gate 1980
2 Bend Gate 1981
3 Bend Gate 1982
4 Bend Gate 1983
5 Bend Gate 1984
6 Bend Gate 1985
7 East Heights 1980
8 East Heights 1981
9 East Heights 1982

Juny
[S]

East Heights 1983
.. with 14 more rows

Quick exercise
initial data frame

math

515
503
514
491
502
488
501
487
496
497

In this case, our new wide data frame, df_wide, should be the same as our
. Is it? How can you tell?

read science
<db1l> <dbl>

281
312
316
276
310
280
318
323
294
306

<db1l>
808
814
816
793
788
789
782
813
818
795

10

In this case,

Example: wide —> long with corrections

Unfortunately, it’s not always so clear cut to reshape data. In this second example, we’ll again reshape from
wide to long, but we’ll have to munge our data a bit after the reshape to make it analysis ready.

First, we’ll read in a second file all_schools_wide.csv. This file contains the same information as before,
but in a very wide format: each school has only one row and each test by year value gets its own column in
the form <test>_<years>.

##
input
##

read in very wide test score data
df <- read_csv(file.path(sch_dir, "all_schools_wide.csv"))

Parsed with column specification:

cols(
school = col_character(),
math_1980 = col_double(),
read_1980 = col_double(),
science_1980 = col_double(),
math_1981 = col_double(),
read_1981 = col_double(),
science_1981 = col_double(),
math_1982 = col_double(),
read_1982 = col_double(),
science_1982 = col_double(),
math_1983 = col_double(),
read_1983 = col_double(),
science_1983 = col_double(),
math_1984 = col_double(),
read_1984 = col_double(),
science_1984 = col_double(),
math_1985 = col_double(),
read_1985 = col_double(),
science_1985 = col_double()

)

show
df

A tibble: 4 x 19
school math_1980 read_1980 science_1980 math_1981 read_1981 science_1981

<chr> <db1l> <db1l> <db1l> <db1l> <dbl> <dbl>
Bend .. 515 281 808 503 312 814
East .. 501 318 782 487 323 813
Niaga.. 514 292 787 499 268 762
Spott.. 498 288 813 494 270 765

. with 12 more variables: math_1982 <dbl>, read_1982 <dbl>,
science_1982 <dbl>, math_1983 <dbl>, read_1983 <dbl>, science_1983 <dbl>,
math_1984 <dbl>, read_1984 <dbl>, science_1984 <dbl>, math_1985 <dbl>,
read_1985 <dbl>, science_1985 <dbl>

H H HEH PP, WDN PR

Second, we can pivot_longer() as we did before using the following values for our key arguments:

o data : df (but piped in using %>%)
o cols : use special {tidyselect} helper function contains() to select all test by year columns

11

https://www.rdocumentation.org/packages/tidyselect/versions/1.0.0/topics/select_helpers

names_to: test_year
values_to: score

##

process

#i#t

wide to long

df_long <- df %>%
pivot_longer(cols = contains("19"),
names_to = "test_year",
values_to = "score")
show
df_long

A tibble: 72 x 3

school test_year score
<chr> <chr> <db1l>
1 Bend Gate math_1980 515
2 Bend Gate read_1980 281
3 Bend Gate science_1980 808
4 Bend Gate math_1981 503
5 Bend Gate read_1981 312
6 Bend Gate science_1981 814
7 Bend Gate math_1982 514
8 Bend Gate read_1982 316
9 Bend Gate science_1982 816
10 Bend Gate math_1983 491
.. with 62 more rows

Quick exercise What do you think contains("19") is doing? Why did we use “19” as our
value? HINT: use the names() function to return a list of the original data frame (df) column
names.

This mostly worked to get our data long, but now we have this weird combined test_year column. What
we really want are two columns, one for the year and one for the test type. We can fix this using {tidyr}
separate() function with the following arguments:

data: our df_long object, piped in using %>%

col: the column we want to split (test_year)

into: the names of the new columns to create from col (test and year)

sep: the name of the character that splits the values in col, so R knows how to fill each of the into
columns ("_")

separate test_year into two columns, filling appropriately
df_long_fix <—- df_long %>%

separate(col = "test_year",
into = c("test", "year"),
Sep = II_II)
show
df_long_fix

A tibble: 72 x 4

12

https://tidyr.tidyverse.org/reference/separate.html
https://tidyr.tidyverse.org/reference/separate.html

school test year score
<chr> <chr> <chr> <dbl>

1 Bend Gate math 1980 515
2 Bend Gate read 1980 281
3 Bend Gate science 1980 808
4 Bend Gate math 1981 503
5 Bend Gate read 1981 312
6 Bend Gate science 1981 814
7 Bend Gate math 1982 514
8 Bend Gate read 1982 316
9 Bend Gate science 1982 816
10 Bend Gate math 1983 491

.. with 62 more rows

Quick exercise Redo the last few steps in a single combined chain using pipes. That is, start
with df (which contains all_schools_wide.csv), reshape long, and fix so that you end up with
four columns — all in a single piped chain.

Final note
Just as all data sets are unique, so too are the particular steps you may need to take to append, join, or
reshape your data. Even experienced coders rarely get all the steps correct the first try. Be prepared to

spend time getting to know your data and figuring out, through trial and error, how to wrangle it so that it
meets your analytic needs. Code books, institutional/domain knowledge, and patience are your friends here!

13

	Setup
	Appending data
	Example

	Joining data
	Example
	1. Get summary
	2. Join

	Reshaping data
	Definitions
	Example: wide –> long
	pivot_longer()

	Example: long –> wide
	pivot_wider()

	Example: wide –> long with corrections

	Final note

