
Data Wrangling IV: A philosophy of data wrangling
EDH7916 | Summer C 2020

Benjamin Skinner

Now that we’ve learned a variety of data wrangling tasks, we’ll take some time to discuss good workflow,
that is, moving from raw data to data that are ready for analysis. In the lessons and assignments we’ve
had so far, we’ve actually already covered many of the major points that are discussed below. This lesson,
therefore, is one part review and one part making explicit the good practices that we’ve implicitly followed.

Organization
From the third lesson, we’ve been very concerned about how our project is organized. This includes both
the directory of folders and files on our machine and the scripts that run our analyses.

Project directory
While it is certainly easier on the front end to store all project files in a single folder

./project
|
|--+ analysis.R
|--+ clean.R
|--+ clean_data.rds
|--+ data1.csv
|--+ data2.csv
|--+ histogram_x.png
|--+ density_z.png

it’s better to separate files by type/purpose in your project directory (“a place for everything and everything
in its place”):

./project
|
|__/data
| |--+ clean_data.rds
| |--+ data1.csv
| |--+ data2.csv
|__/figures
| |--+ histogram_x.png
| |--+ density_z.png
|__/scripts

|--+ analysis.R
|--+ clean.R

Just like there’s something to be said for visiting the library in order to scan titles in a particular section —
it’s easier to get an idea of what’s available by looking at the shelf than by scanning computer search output

— it’s useful to be able to quickly scan only the relevant files in a project. With well-named files (discussed

1

https:/equant.github.io/edh7916/lessons/organizing.html

below) and an organized directory structure, a replicator may be able to guess the purpose, flow, and output
of your project without even running your code.

Quick question When using a project directory instead of just a single folder, we need to use
file paths. In particular, we use relative paths rather than fixed paths. Why?

Script
In the lesson on organizing, I also shared a template R script. While you do not need to use my particular
template — in fact, you should modify it to meet your needs — it does follow a few organizational rules that
you should follow as well.

1. Clear header with information about the project, this file, and you.
2. Load libraries, set paths and macros, and write functions towards the top of the file.
3. Clear sections for reading in data, process, and output (ingredients, recipe, prepared dish).

Quick question Why put things like file paths or macros at the top of the file?

Clarity
Remember: even though our scripts are instructions for the computer, they are also meant to be read by us
humans. How well you comment your code and how well you name your objects, scripts, data, output, etc,
determine the clarity of your intent.

Commenting
Don’t assume that your intent is clear. Particularly because so much working code comes as the result of
many (…many…many…) revisions to non-working code, it’s very important that you comment liberally.

• What are you doing?
Creating a dummy variable for each state from current categorical variable

• Why are you doing it this way?
Converting 1/2 indicator to 0/1 so 1 == variable name

• Links to supporting documents/websites
see <url> for data codebook

• Hat-tip (h/t) for borrowed code
h/t <url> for general code that I slightly modified

• Formula / logic behind method
log(xy) = log(x) + log(y)
using logarithms for more numerically stable calculations

All of these items are good uses for comments.

Quick question In which situation are comments not useful?

2

https:/equant.github.io/edh7916/lessons/organizing.html

Naming
For R, all the following objects are functionally equivalent:
v.1
x <- c("Alabama","Alaska","Arkansas")

v.2
stuff <- c("Alabama","Alaska","Arkansas")

v.3
cities <- c("Alabama","Alaska","Arkansas")

v.4
states <- c("Alabama","Alaska","Arkansas")

However, only the last object, states, makes logical sense to us based on its contents. So while R will work
just as happily with x, stuff, cities, or states, a collaborator will appreciate states since it gives an idea
of what it contains (or should contain) — even without running the code.

Quick question Without seeing the initial object assignment, what might you expect to see
as output from the following code coming from a fellow higher education researcher? Why?
for (i in flagship_names) {

print(i)
}

When objects are well named, your code may become largely self-documenting, which is particularly nice
since you don’t have to worry about drift between your comments and code over time.

Automation
In the functional programming lesson, we discussed the difference between Don’t Repeat Yourself program-
ming and Write Every Time programming. As much as possible and within the dictates of organizing and
clarity, it’s a good idea to automate as much as you can.

Push-button replication
In general, the goal for an analysis script — in particular, a replication script — is that it will run from top
to bottom with no errors by just pushing a button. What I mean by this is that I want to:

1. Download the project directory
2. Open the script in R Studio
3. (If necessary, make sure I’m in the correct working directory)
4. Push the “Run” button and have all the analyses run with all estimates/figures/tables being produced

and sent to their proper project folders.

The dream!

When projects are complicated or data isn’t easily shared (or can’t be shared), the push button replication
may not be feasible. But your goal should always be to get as close to that as possible. Make your life a
little harder so your collaborators, replicators — and future you! — have it a little easier.

ONE NOTE Like writing a paper, the process going from a blank script to a final product typically isn’t
linear. You’ll have starts and stops, dead-ends and rewrites. You shouldn’t expect a polished paper from
the first draft, and you shouldn’t expect to code up a fully replicable script from the get-go.

3

https://en.wikipedia.org/wiki/Self-documenting_code
https:/equant.github.io/edh7916/lessons/programming.html

There’s something to be said for just getting your ideas down on paper, no matter how messy. Similarly, it
may be better to just get your code to work first and then clean it up later. My only warning here is that
while you have to clean up a paper eventually (someone’s going to read it), code still remains largely hidden
from public view. There will be a temptation to get it to work and then move on. Fight that urge!

Quick question In a world in which not everyone knows how to use R, what’s another benefit
of push-button automation?

Multiple scripts
We’ve only worked with one script so far, but you can use the source() function in R to call other R scripts.
For a very large project, you may decide to have multiple scripts. For example, you may have one script that
downloads data, one that cleans the data, one that performs the analyses, and one that makes the figures.

Rather than telling a would-be replicator to “run the following files in the following order”

1. get_data.R
2. clean_data.R
3. do_analysis.R
4. make_figures.R

you could instead include a run_all.R script that only sources each script in order and tell the replicator to
run that:
To run all analyses, set the working directory to "scripts" and
enter
##
source("./run_all.R")
##
into the console.

download data
source("./get_data.R")

clean data
source("./clean_data.R")

run analyses
source("./do_analysis.R")

make figures
source("./make_figures.R")

Not only is that easier for others to run, you now have a single script that makes your analytic workflow
much clearer. Note that there are other ways to do something like this, such as using makefiles (here’s an
example of the replication code for one of my projects), but using only R will work pretty well.

Testing
As you wrangle your data, you should take advantage of your computer’s power not only to perform the
munging tasks you require, but also to test that inputs and outputs are as expected.

4

https://stat.ethz.ch/R-manual/R-devel/library/base/html/source.html
https://en.wikipedia.org/wiki/Makefile
https://github.com/btskinner/oa_online_broadband_rep
https://github.com/btskinner/oa_online_broadband_rep

Expected data values
Let’s say you are investigating how college students use their time. You have data from a time use study in
which 3,000 students recorded how they spent every hour for a week. The data come to you at the student-
week level and grouped by activity type. This means you see that Student A spent 15 hours working, 20
hours studying/doing homework, etc. You create a new column that adds the time for all categories together
and take the summary. You find:

variable mean sd min max
total_hrs 167.99 1.93 152.48 183.46

Something is wrong.

Quick question What’s wrong?

Rather than going through an ad-hoc set of “ocular” checks, you can build in more formal checks. We’ve
done a little of this when using identical() or all.equal() to compare data frames. You could build these
into your scripts. For example:

• summing activity hours in a week, check if any exceed the total number of hours that are possible
• reading in data with student GPAs, check if they are negative
• combining data from 100 students at 5 schools, make sure your final data frame has 500 rows
• creating a new percentage from two values, check that the value between 0 and 100 (or between 0 and

1 if a proportion)

You can use simple tests to check, and include a stop() command inside an if() statement:
halt if max number of months is greater than 12 since data are only
for one year
if (max(length(months)) > 12) {

stop("Reported months greater than 12! Check!")
}

This only works if you know your data. Knowing your data requires both domain knowledge (“Why are sum-
mer enrollments so much higher than fall enrollments…that doesn’t make sense.”) and particular knowledge
about your data (“All values of x between 50 and 100, except these two, which are -1 and 20000…something’s
up”).

Expected output from functions
Programmers are big on unit testing their functions. This simply means giving their functions or applications
very simple input that should correspond to straightforward output and confirming that that is the case.

For example, if their function could have three types of output depending on the input, they run at least
three tests, one for each type of output they expect to see. In practice, they might run many more tests for
all kinds of conditions — even those that should “break” the code to make sure the proper errors or warnings
are returned.

As data analysts, you are unlikely to need to conduct a full testing regime for each project. But if you write
your own functions, you should definitely stress test them a bit. This testing shouldn’t be in your primary
script but rather in another script, perhaps called tests.R. These can be informal tests such as
should return TRUE
(function_to_return_1() == 1)

5

https://en.wikipedia.org/wiki/Unit_testing

or more sophisticated tests using R’s testthat library.

Again, the point isn’t that you spend all your time writing unit tests. But spending just a bit of time
checking that your functions do what you think they do will go a long way.

Imagine you’ve written your own version of scale(), which lets you normalize a set of numbers
to N(0,1):

my_scale <- function(x) {
get mean
mean_x <- mean(x)
set sd
sd_x <- sd(x)
return scaled values
x - mean_x
scaled_x = ------------
sd_x
return((x - mean_x) / sd_x)

}

What kind of tests do you think you should run, i.e., what kind of inputs should you give it and
what should you expect?

Fail loudly and awkwardly
There is a notion in software development that a program should fail gracefully, which means that when a
problem occurs, the program should at the very least give the user a helpful error message rather than just
stopping without note or looping forever until the machine halts and catches fire.

As data analysts, I want your scripts to do the opposite: I want your code to exit loudly and awkwardly if
there’s a problem. You aren’t writing a program but rather an analysis. Therefore, the UX I care about
is the reader of your final results and your future replicators. Rather than moving forward silently when
something strange happens — which is lovely on the front end because everything keeps running but deadly
on the back end — your code should stop and yell at you when something unexpected happens. It’s annoying,
but that’s the point.

Four stages of data: a taxonomy
In the lessons so far, we’ve generally read in raw data, done some processing that we printed to the console,
and then finished. This is fine for our small lessons and assignments, but in your own work, you will often
want to save your changes to the data along the way — that is, save updated data files at discrete points in
your data analysis. This is particularly true for large projects in which wrangling your data is distinct from
its analysis and you don’t want to run each part every time.

Broadly, there are four stages of data:

1. Raw data
2. Built data (objective changes)

6

https://testthat.r-lib.org
https://en.wikipedia.org/wiki/Graceful_exit
https://en.wikipedia.org/wiki/Halt_and_Catch_Fire
https://en.wikipedia.org/wiki/User_experience
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1044-7
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1044-7

3. Clean data (subjective changes)
4. Analysis data

For small projects, you may not end up with data files for each stage. That said, your workflow should be
organized in terms of moving from one stage to the next.

We’ll talk about each below.

ACKNOWLEDGMENT I want to give a quick hat tip to two people who’ve really helped me clarify my
thinking about these stages of data, Will Doyle and Sally Hudson: Will for first showing the importance of
keeping raw data untouched; and Sally for showing how useful it is to make a distinction between objective
and subjective data processing, particularly in large projects. Thanks and credit to both.

Raw data
Raw data, that is, the data you scrape, download, receive from an advisor or research partner, etc, are
sacrosanct. Do not change them! They are to be read into R (or whatever software you use) and that is all.

You will be tempted from time to time to just fix this one thing that is wonky about the data. Maybe you
have a *.csv file that has a bunch of junk notes written above the actual data table (not uncommon). The
temptation will be to delete those rows so you have a clean file. NO! There are ways to skip rows in a file
like this, for example. R is particularly good at reading in a large number of data types with a large number
of special situations.

If you are at all concerned that you or a collaborator may accidentally save over your raw files, your operating
system will allow you to change the file permissions such that they are read-only files (Dropbox will let
you protect files in this way, too). Particularly if working with a number of collaborators, protecting your
raw data files in this way is a good idea.

Built data (objective changes)
As a first step in processing your data, you should only make objective modifications. What do I mean by
objective? They are those modifications that:

1. Are required to get your data in good working order
2. Are modifications that will always be needed across projects using the same data (in the context of

multiple projects)

To the first point, let’s say you receive student-level administrative data that includes a column, state, that
is the student’s home state. However, values in the column include:

• "Kentucky"
• "KY"
• "Ken"
• "21" (state FIPS code)

Another example would be a date column, month, in which you see:

• "February"
• "Feb"
• "2"

7

https://twitter.com/wdoyle42
https://twitter.com/SallyLHudson

In both cases, it’s clear that you want a consistent format for the data. Whatever you pick, these are
objective changes that you would make at this time.

To the second point, let’s say this same administrative data are going to be used across multiple projects.
In each project, you need to compute the proportion of in-state vs. out-of-state students. The data column
that indicates this is called residency and is coded (with no data labels) as

• 1 := in-state
• 2 := out-of-state

Coming back to the data later and taking a look at the first few rows in residency, will it be clear

• what residency means?
• what the values of 1 and 2 represent?

No.

An objective change that you can use across analyses will be to make a new column called instate in which

• 0 := out-of-state
• 1 := in-state

The benefits are three-fold:

• 0 and 1 are logically coded as FALSE and TRUE
• instate gives a direction to the 0s and 1s: 1 means in-state
• taking the mean of instate will give you the proportion of in-state students in your data

If your data or project (or number of projects) is large, you many want to save data files after your objective
wrangling. These can be reused across projects, which will make sure that objective data wrangling decisions
are consistent.

Clean data (subjective changes)
Whatever changes are left over after you’ve make objective changes are subjective changes. These changes
are project and analysis specific.

For example, let’s say your student-level administrative data have information about the student’s expected
family contribution or EFC. In your data, you have the actual values. However, you want to compare your
data to other published research in which EFC is binned into discrete categories. This means that in order
to make a comparison, you have to bin your data the same way. This is a subjective task for two reasons:

• there’s not an objective reason to bin your data in this manner, i.e. to make the data consistent or
clearer

• it’s unlikely you’ll need this new column of data for other projects

Some other subjective changes you might make to a data set:

• create an indicator variable that equals 1 when a student’s family income is below $35,000/year (why
$30k? why not $25k or $35k?)

• convert institutional enrollments to the log scale (do you always need to do this?)

8

https://fafsa.ed.gov/help/fftoc01g.htm
https://fafsa.ed.gov/help/fftoc01g.htm

• join in data on the unemployment rate in the student’s county (do you always need this information
at the county level? at all?)

But wait! Maybe you do want to use the binned value of EFC in multiple projects — perhaps the binned
categories are standard across the literature — or the other examples appear always useful and otherwise
standard. Isn’t that objective?

Maybe!

The thing about determining the difference between objective vs subjective cleaning is that on the margins,
well, it’s subjective! The point is not to have hard and fast rules, but rather to do your best to clearly
separate those data wrangling tasks that must be done for the sake of consistency and clarity versus those
that may change depending on your research question(s).

Quick question What might be some other subjective data wrangling tasks? Think about
other research you’ve conducted or seen. Or think about what our lessons and assignments so
far: what have been subjective tasks?

Analysis data
Finally, analysis data are data that are properly structured for the analysis you want to run (or the table or
figure you want to make). In many cases, your analysis data set will be the same as your clean data set:

• it’s in the shape you want (rectangular, with observations in rows and variables in columns)
• it has all the variables you need to compute summary statistics or run regression models

Most R statistical routines (e.g., mean(), sd(), lm()) do a fair amount of data wrangling under the hood to
make sure it can do what you ask. For example, you may have missing values (NA) in your clean data set,
but R’s linear model function, lm(), will just drop observations with missing values by default. If you are
okay with that in your analysis, R can handle it.

However, for some special models or figures, you may need to reshape or pre-process your clean data in one
last step before running the specific analysis you want. For example, your clean data frame may have a
column of parental occupational field (parocc) as a categorical variable in which the first few categories are

• 11 := Management Occupations
• 13 := Business and Financial Operations Occupations
• 15 := Computer and Mathematical Occupations
• 17 := Architecture and Engineering Occupations

…and so on. You want to run an analysis in which you can’t use this categorical variable but instead need a
vector of dummy variables, that is, converting this single column into a bunch of columns that only take on
0/1 values if parocc equals that occupation:

• manage_occ == 1 if parocc == 11 else manage_occ == 0
• busfin_occ == 1 if parocc == 13 else busfin_occ == 0
• commat_occ == 1 if parocc == 15 else commat_occ == 0
• arceng_occ == 1 if parocc == 17 else arceng_occ == 0

…and so on. Particularly if

• your data are large
• the analysis takes a while to run
• you want to use the same data set up for multiple (but not all) models or analytic tasks

you may want to save this particular analysis data set.

9

As with the difference between objective and subjective data, the difference between subjective and analysis
data does not align to a set of hard and fast rules. That’s okay! The main point is that as a data analyst,
you make data wrangling decisions thinking about how you will go from raw to objective to subjective to
analysis data in a logical and clear manner. Collaborators, replicators, and future you will appreciate it!

Recommended texts
There are a number of great texts that talk about the process of data wrangling. Two that have particularly
informed this lecture and are worth looking at more fully:

• The Pragmatic Programmer: From Journeyman to Master by Andrew Hunt and David Thomas
• Code and Data for the Social Sciences: A Practitioner’s Guide by Matthew Gentzkow and Jesse Shapiro

10

https://pragprog.com/book/tpp20/the-pragmatic-programmer-20th-anniversary-edition
https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf

	Organization
	Project directory
	Script

	Clarity
	Commenting
	Naming

	Automation
	Push-button replication
	Multiple scripts

	Testing
	Expected data values
	Expected output from functions
	Fail loudly and awkwardly

	Four stages of data: a taxonomy
	Raw data
	Built data (objective changes)
	Clean data (subjective changes)
	Analysis data

	Recommended texts

