Data Wrangling with Base R
EDH7916 | Summer C 2020

Benjamin Skinner

This supplemental lesson is a companion to the lesson on data wrangling with Tidyverse. While the tidyverse
has fundamentally changed the way many people work with R, you can still use base or “vanilla” R for your
data wrangling tasks. You may find it useful to perform an example data analysis without the support of
the tidyverse.

Because much of the material is otherwise the same, we won’t go into the same depth in this supplemental
lesson (you'll even see some repeated text). We’ll simply work to answer the research question posed in the
other lesson.

Example data analysis task

Let’s imagine we’ve been given the following data analysis task with the HSLS09 data:

Figure out average differences in college degree expectations across census regions; for a first pass,

ignore missing values and use the higher of student and parental expectations if an observation
has both.

A primary skill (often unremarked upon) in data analytic work is translation. Your advisor, IR director,
funding agency director — even collaborator — won’t speak to you in the language of R. Instead, it’s up to
you to (1) translate a research question into the discrete steps coding steps necessary to provide an answer,
and then (2) translate the answer such that everyone understands what you’ve found.

What we need to do is some combination of the following:

1. Read in the data

Select the variables we need

Mutate a new value that’s the higher of student and parental degree expectations
Filter out observations with missing degree expectation values

Summarize the data within region to get average degree expectation values
Arrange in order so it’s easier to rank and share

Write out the results to a file so we have it for later

A

Let’s do it!

NOTE: Since we’re not using the tidyverse, we don’t need to call it this time. Even with non-tidyverse R,
you may need to call libraries. This analysis, however, does not require any.

##
libraries
##

NONE

https:/equant.github.io/edh7916/lessons/dw_one.html

Check working directory

This script — like the one from the organizing lesson — assumes that the scripts subdirectory is the working
directory, that the required data file is in the data subdirectory, and that both subdirectories are at the same
level in the course directory. Like this:

edh7916/ <——— Top-level

|

|__/data <——— Sub-level 1
| |-—+ hsls_small.csv
I
I

__/scripts <——— Sub-level 1 (Working directory)
|-—+ dw_one_base_r.R

If you need a refresher on setting the working directory, see the prior lesson.

Notice that I'm not setting (i.e. hard coding) the working directory in the script. That would not work
well for sharing the code. Instead, I tell you where you need to be (a common landmark), let you get there,
and then rely on relative paths afterwards.

##
directory paths
##

assume we're running this script from the ./scripts subdirectory
dat_dir <- file.path("..", "data")

Read in data

For this lesson, we’ll use a subset of the High School Longitudinal Study of 2009 (HSLS09), an IES / NCES
data set that features:

o Nationally representative, longitudinal study of 23,000+ 9th graders from 944 schools in
2009, with a first follow-up in 2012 and a second follow-up in 2016

e Students followed throughout secondary and postsecondary years

e Surveys of students, their parents, math and science teachers, school administrators, and
school counselors

e A new student assessment in algebraic skills, reasoning, and problem solving for 9th and
11th grades

¢ 10 state representative data sets

If you are interested in using HSLS09 for future projects, DO NOT rely on this subset. Be sure to download
the full data set with all relevant variables and weights if that’s the case. But for our purposes in this lesson,
it will work just fine.

Throughout, we’ll need to consult the code book. An online version can be found at this link (after a little
navigation).

Quick exercise Follow the code book link above in your browser and navigate to the HSLS09
code book.

https:/equant.github.io/edh7916/lessons/organizing.html
https:/equant.github.io/edh7916/lessons/organizing.html
https://nces.ed.gov/surveys/hsls09/
https://nces.ed.gov/OnlineCodebook/
https://nces.ed.gov/OnlineCodebook/

##
input
##

data are CSV, so we use read.csv(), which is base R function
df <- read.csv(file.path(dat_dir, "hsls_small.csv"))

Unlike the read_csv() function we've used before, read.csv() (notice the difference: a . instead of an _)
doesn’t print anything. So that we can see our data, well print to the console. BUT before we do that...

read.csv() returns a base R data.frame() rather than the special data frame or tibble() that the tidyverse
uses. It’s mostly the same, but one difference is that whereas R will only print the first 10 rows of a tibble,
it will print the entire data.frame. We don’t need to see the whole thing, so we’ll use the head() function to
print only the first 10 rows.

show first 10 rows
head(df, n = 10)

stu_id x1sex xlrace x1lstdob xltxmtscor xlparedu xlhhnumber x1famincome

1 10001 1 8 199502 59.3710 5 3 10

2 10002 2 8 199511 47.6821 3 6 3

3 10003 2 3 199506 64.2431 7 3 6

4 10004 2 8 199505 49,2690 4 2 5

5 10005 1 8 199505 62.5897 4 4 9

6 10006 2 8 199504 58.1268 3 6 5

7 10007 2 8 199409 49,4960 2 2 4

8 10008 1 8 199410 54.6249 7 3 7

9 10009 1 8 199501 53.1875 2 3 4

10 10010 2 8 199503 63.7986 3 4 4
x1lpoverty185 x1lses xlstuedexpct xlparedexpct xlregion x4hscompstat

1 0 1.5644 8 6 2 1

2 1 -0.3699 11 6 1 1

3 0 1.2741 10 10 4 1

4 0 0.5498 10 10 3 1

5 0 0.1495 6 10 3 1

6 0 1.0639 10 8 3 -8

7 0 -0.4300 8 11 1 1

8 0 1.5144 8 6 1 1

9 0 -0.3103 11 11 3 1

10 0 0.0451 8 6 1 -8
x4evratndclg x4hs2psmos

1 1 3

2 1 3

3 1 4

4 0 -7

5 0 -7

6 -8 -8

7 1 2

8 3

9 1 8

10 -8 -8

Quick exercise read.csv() is special version of read.table(), which can read various delimited
file types, that is, tabular data in which data cells are separated by a special character. What’s

the special character used to separate CSV files? Once you figure it out, re-read in the data
using read.table(), being sure to set the sep argument to the correct character.

You’ll also notice that the data.frame doesn’t tell use the types of our columns. If we really want to know,
we can use the class() function. So that we can see all columns, we can use the sapply() function, which
will let us apply the class() function across all columns.

show column types
sapply(df, class)

stu_id x1lsex xlrace x1lstdob xltxmtscor x1lparedu
"integer" "integer" "integer" "integer" "numeric" "integer"
Xx1hhnumber x1lfamincome xlpoverty185 xlses xlstuedexpct xlparedexpct
"integer" "integer" "integer" "numeric" "integer" "integer"
xlregion x4hscompstat x4evratndclg x4hs2psmos
"integer" "integer" "integer" "integer"

Select variables (columns)

Data frames are like special matrices. They have rows and columns. You can access these rows and columns
using square bracket notation ([1). Because a matrix has two dimensions, you use a comma inside the square
brackets to indicate what you mean ([,1]):

e df[<rows>,<cols>]

At it’s most basic, you can use numbers to represent the index of the cell or cells you're interested in. For
example, if you want to access the value of the cell in row 1, column 4, you can use:

show value at row 1, col 4
df[1, 4]

[1] 199502

Because data frames have column names (the variable names in our data set), we can also refer to them by
name. The fourth column is the student date of birth variable, x1stdob. Using that instead of 4 (notice the
quotation marks ""):

show value at row 1, xlstdob column
df[1, "x1stdob"]

[1] 199502

If we want to see more than one column, we can put the names in a concatenated vector using the c()
function:

show values at row 1, stu_id & x1stdob column
df[1, c("stu_id", "x1stdob")]

stu_id x1stdob
1 10001 199502

So far, we’ve not assigned these results to anything, so they’ve just printed to the console. However, we can
assign them to a new object. If we want to slice our data so that we only have selected columns, we can
leave the rows section blank (meaning we want all rows) and include all the columns we want to keep in our
new data frame object.

##

select
##

select columns we need and assign to new object
df_tmp <- df[, c("stu_id", "x1stuedexpct", "xlparedexpct", "xlregion")]

show 10 rows
head(df_tmp, n = 10)

stu_id x1stuedexpct x1lparedexpct xlregion

1 10001 8 6 2
2 10002 11 6 1
3 10003 10 10 4
4 10004 10 10 3
5 10005 6 10 3
6 10006 10 8 3
7 10007 8 11 1
8 10008 8 6 1
9 10009 11 11 3
10 10010 8 6 1

Mutate data into new forms

Changing existing variables (columns)

To conditionally change a variable, we’ll once again use the bracket notation to target our changes. This
time, however, we do a couple of things differently:

¢ include square brackets on the LHS of the assignment
o use conditions in the <rows> part of the bracket

As before, we need to account for the fact that our two expectation variables, x1stuedexpct and xlparedexpct,
have values that need to be converted to NA: -8, -9, and 11. See the first data wrangling lesson for the rationale
behind these changes.

First, let’s look at the unique values using the table() function. So that we see any missing values, we’ll
include an extra argument:
#H#

mutate
#it

see unique values for student expectation
table(df_tmp$xlstuedexpct, useNA = "ifany")

-8 1 2 3 4 5 6 7 8 9 10 11
2059 93 2619 140 1195 115 3505 231 4278 176 4461 4631

see unique values for parental expectation
table(df_tmp$xlparedexpct, useNA = "ifany")

-9 -8 1 2 3 4 5 6 7 8 9 10 11
32 6715 55 1293 149 1199 133 4952 76 3355 37 3782 1725

Notice that we use a dollar sign, $, to call the column name directly. Unlike with the tidyverse, we cannot
just use the column name. Base R will look for that column name not as a column in a data frame, but as
its own object. It probably won’t find it (or worse, you’ll have another object in memory that it will find
and you’ll get the wrong thing!).

Remember how data.frames are special matrices? One of the special features is that you can use the $ sign
with the column name as a short cut or double square brackets without the comma.

https:/equant.github.io/edh7916/lessons/dw_one.html
https:/equant.github.io/edh7916/lessons/dw_one.html

each version pulls the column of data for student expectations
TRUE == 1, so if the mean of all values == 1, then all are TRUE
mean (df_tmp$xlstuedexpct == df_tmp[, "xlstuedexpct"]) == 1

[1] TRUE
mean (df_tmp$xlstuedexpct == df_tmp[["x1lstuedexpct"]]) == 1

[1] TRUE
Back to replacing our missing values with NA...

The conditions we care about are when df_tmp$xlstuedexpct == -8, for example. Using that condition in
the row section of the square bracket, we can replace only what we want.

replace student expectation values
df_tmp$xlstuedexpct [df_tmp$xlstuedexpct == -8] <- NA
df_tmp$xlstuedexpct [df_tmp$xlstuedexpct == 11] <- NA

replace parent expectation values

df_tmp$xlparedexpct [df_tmp$xlparedexpct == -8] <- NA
df_tmp$xlparedexpct [df_tmp$xlparedexpct == -9] <- NA
df_tmp$xlparedexpct [df_tmp$xlparedexpct == 11] <- NA

What each of these lines says is (first one for example): In the data.frame df_tmp, replace the value in
x1stuedexpct — where the value of df_tmp$xlstuedexpct is -8 — with NA

As less convoluted way of saying this might be (more generally stated): Where the value in column A equals
X, replace the value in column A with Y.

Let’s confirm using table() again. The values that were in -8, -9, and 11 should now be summed under NA.

see unique values for student expectation (confirm changes)
table(df_tmp$xlstuedexpct, useNA = "ifany")

1 2 3 4 5 6 7 8 9 10 <NA>
93 2619 140 1195 115 3505 231 4278 176 4461 6690

see unique values for parental expectation (confirm changes)
table(df_tmp$xlparedexpct, useNA = "ifany")

1 2 3 4 5 6 7 8 9 10 <NA>
55 1293 149 1199 133 4952 76 3355 37 3782 8472

Adding new variables (columns)

Adding a new variable to our data frame is just like modifying an existing column. The only difference is
that instead of putting an existing column name after the first $ sign, we’ll make up a new name. This tells
R to add a new column to our data frame.

As with the tidyverse version, we’ll use the ifelse() function to create a new variable that is the higher of
student or parental expectations.

add new column

df_tmp$high_expct <- ifelse(df_tmp$xlstuedexpct > df_tmp$xlparedexpct, # test
df_tmp$xlstuedexpct, # if TRUE
df_tmp$xlparedexpct) # if FALSE

show first 10 rows
head(df_tmp, n = 10)

stu_id x1stuedexpct x1lparedexpct xlregion high_expct

1 10001 8 6 2 8
2 10002 NA 6 1 NA
3 10003 10 10 4 10
4 10004 10 10 3 10
5 10005 6 10 3 10
6 10006 10 8 3 10
7 10007 8 NA 1 NA
8 10008 8 6 1 8
9 10009 NA NA 3 NA
10 10010 8 6 1 8

Again, our “ocular test” shows that this doesn’t handle NA values correctly. Look at student 10002 in the
second row: while the student doesn’t have an expectation (or said “I don’t know”), the parent does. However,
our new variable records NA. Let’s fix it with this test:

If high_expct is missing and x1stuedexpct is not missing, replace with that; otherwise replace
with itself (leave alone). Repeat, but for xlparedexpct. If still NA, then we can assume both
student and parent expectations were missing.

Translating the bold words to R code:

e is missing: is.na()
e and: &
o is not missing: !is.na() (! means NOT)

we get:

correct for NA values

NB: We have to include [is.na(df_tmp$high_expct)] each time so that
everything lines up

step 1 student
df_tmpshigh_expct[is.na(df_tmp$high_expct)] <- ifelse(
test
lis.na(df_tmp$x1lstuedexpct[is.na(df_tmp$high_expct)]),
if TRUE do this...
df_tmp$xlstuedexpct[is.na(df_tmp$high_expct)],
... else do that
df_tmpshigh_expct[is.na(df_tmp$high_expct)]

step 2 parent

df_tmps$high_expct[is.na(df_tmp$high_expct)] <- ifelse(
test
lis.na(df_tmp$xlparedexpct[is.na(df_tmp$high_expct)]1),
if TRUE do this...
df_tmp$xlparedexpct[is.na(df_tmp$high_expct)],
... else do that
df_tmpshigh_expct[is.na(df_tmp$high_expct)]

)

That’s a lot of text! What’s happening is that we are trying to replace a vector of values with another vector
of values, which need to line up and be the same length. That’s why we have

what we'll use to replace when TRUE
df_tmp$xlstuedexpct[is.na(df_tmp$high_expct)]

When our high_expct column has missing values, we want to replace with non-missing x1stuedexpct values
in the same row. That means we also need to subset that column to only include values in rows that have
missing high_expct values. Because we must do this each time, our script gets pretty long and unwieldy.
Let’s check to make sure it worked as intended.

show first 10 rows
head(df_tmp, n = 10)

stu_id x1stuedexpct xlparedexpct xlregion high_expct

1 10001 8 6 2 8
2 10002 NA 6 1 6
3 10003 10 10 4 10
4 10004 10 10 3 10
5 10005 6 10 3 10
6 10006 10 8 3 10
7 10007 8 NA 1 8
8 10008 8 6 1 8
9 10009 NA NA 3 NA
10 10010 8 6 1 8

Looking at the second observation again, it looks like we’ve fixed our NA issue. Looking at rows 7 and 9, it
seems like those situations are correctly handled as well.

Filter observations (rows)

Let’s check the counts of our new variable:
#Hi#t

filter
#it

get summary of our new variable
table(df_tmp$high_expct, useNA = "ifany")

1 2 3 4 5 6 7 8 9 10 <NA>
71 2034 163 1282 132 4334 191 5087 168 6578 3463

Since we're not going to use the missing values (we really can’t, even if we wanted to do so), we’ll drop those
observations from our data frame.

As when we selected columns above, we’ll use the square brackets notation. As with dplyr’s filter(), we
want to filter in what we want. We set this condition before the comma in the square brackets. Because we
want all the columns, we leave the space after the comma blank.

filter in values that aren't missing
df_tmp <— df_tmp['is.na(df_tmp$high_expct),]

show first 10 rows
head(df_tmp, n = 10)

stu_id x1stuedexpct x1lparedexpct xlregion high_expct

1 10001 8 6 2 8
2 10002 NA 6 1 6
3 10003 10 10 4 10
4 10004 10 10 3 10
5 10005 6 10 3 10
6 10006 10 8 3 10

7 10007 8 NA 1 8
8 10008 8 6 1 8
10 10010 8 6 1 8
11 10011 8 6 3 8

It looks like we’ve dropped the rows with missing values in our new variable (or, more technically, kept those
without missing values). Since we haven’t removed rows until now, we can compare the number of rows in
the original data frame, df, to what we have now.

is the original # of rows — current # or rows == NA in count?
nrow(df) - nrow(df_tmp)

[1]1 3463

Comparing the difference, we can see it’s the same as the number of missing values in our new column.
While not a formal test, it does support what we expected (in other words, if the number were different,
we’d definitely want to go back and investigate).

Summarize data

Now we’re ready to get the average of expectations that we need. For an overall average, we can just use
the mean() function.

#H#
summarize
##

get average (without storing)
mean (df_tmp$high_expct)

[1] 7.272705

Overall, we can see that students and parents have high postsecondary expectations on average: to earn
some graduate credential beyond a bachelor’s degree. However, this isn’t what we want. We want the values
across census regions.

check our census regions
table(df_tmp$xlregion, useNA = "ifany")

1 2 3 4
3128 5312 8177 3423

We’re not missing any census data, which is good. To calculate our average expectations, we need to use the
aggregate function. This function allows to compute a FUNction by a group. We’ll use it to get our summary.

get average (assigning this time)

df_tmp <- aggregate(df_tmp["high_expct"], # var of interest
by = list(region = df_tmp$xlregion), # by group
FUN = mean) # function to run
show
df_tmp

region high_expct

1 1 7.389066
2 2 7.168110
3 3 7.357833
4 4 7.125329

Success! Expectations are similar across the country, but not the same by region.

Arrange data

As our final step, we’ll arrange our data frame from highest to lowest (descending). For this, we’ll use sort()
and the decreasing option.

##
arrange
##

arrange from highest expectations (first row) to lowest
df_tmp$high_expct <- sort(df_tmp$high_expct, decreasing = TRUE)

show
df_tmp

region high_expct

1 1 7.389066
2 2 7.357833
3 3 7.168110
4 4 7.125329

Write out updated data

We can use this new data frame as a table in its own right or to make a figure. For now, however, we’ll
simply save it using the opposite of read.csv() — write.csv() — which works like writeRDS() we’ve used
before.

write with useful name
write.csv(df_tmp, file.path(dat_dir, "high_expct_mean_region.csv'"))

And with that, we’ve met our task: we can show average educational expectations by region. To be very
precise, we can show the higher of student and parental educational expectations among those who answered
the question by region. This caveat doesn’t necessarily make our analysis less useful, but rather sets its scope.
Furthermore, we’ve kept our original data as is (we didn’t overwrite it) for future analyses while saving the
results of this analysis for quick reference.

10

	Example data analysis task
	Check working directory
	Read in data
	Select variables (columns)
	Mutate data into new forms
	Changing existing variables (columns)
	Adding new variables (columns)

	Filter observations (rows)
	Summarize data
	Arrange data
	Write out updated data

