
Data Wrangling II: Appending, joining, and reshaping data
EDH7916 | Summer C 2020

Benjamin Skinner

So far, we have only worked with single data files: we read in a file, wrangled our data, and, sometimes,
outputted a new file. But very often, a key aspect of the data wrangling workflow is to combine more than one
data set together. This may include appending new rows to an existing data frame in memory or joining
two data sets together using a common key value found in both. Another key data manipulation task is
to reshape our data, pivoting from wide to long form (or vice versa). We’ll go through each individually
below.

Data
After you download and unzip the data for today’s lesson, move the full folder, sch_test, into the data
subdirectory. It should look something like this:

|__ data/
|-- ...
|__ sch_test/

|-- all_schools.csv
|-- all_schools_wide.csv
|__ by_school/

|-- bend_gate_1980.csv
|-- bend_gate_1981.csv
|...
|-- spottsville_1985.csv

These fake data represent test scores across three subjects — math, reading, and science — across four
schools over six years. Each school has a file for each year in the by_school subdirectory. The two files in
sch_test directory, all_schools.csv and all_schools_wide.csv, combine the individual files but in different
formats. We’ll use these data sets to practice appending, joining, and reshaping.

Setup
As always, we begin by reading in the tidyverse library and assigning our paths to macros we can reuse
below.

libraries

library(tidyverse)

── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──

✔ ggplot2 3.3.0 ✔ purrr 0.3.4
✔ tibble 3.0.1 ✔ dplyr 0.8.5

1

✔ tidyr 1.1.0 ✔ stringr 1.4.0
✔ readr 1.3.1 ✔ forcats 0.5.0

── Conflicts ── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()

As we did in the past lesson, we run this script assuming that our working directory is set to the scripts
directory. Notice that we also include macros for our subdirectories within the data directory. Since they
are nested, we can use the previous macros to set new macros.

directory paths

assume we're running this script from the ./scripts subdirectory
dat_dir <- file.path("..", "data")
sch_dir <- file.path(dat_dir, "sch_test") # use dat_dir
bys_dir <- file.path(sch_dir, "by_school") # use sch_dir

Appending data
Our first task is the most straightforward. When appending data, we simply add similarly structured rows
to an exiting data frame. What do I mean by similarly structured? Imagine you have a data frame that
looks like this:

id year score
A 2020 98
B 2020 95
C 2020 85
D 2020 94

Now, assume you are given data that look like this:

id year score
E 2020 99
F 2020 90

These data are similarly structured: same column names in the same order. If we know that the data
came from the same process (e.g., ids represent students in the same classroom with each file representing
a different test day), then we can safely append the second to the first:

id year score
A 2020 98
B 2020 95
C 2020 85
D 2020 94
E 2020 99
F 2020 90

2

Data that are the result of the exact same data collecting process across locations or time may be appended.
In education research, administrative data are often recorded each term or year, meaning you can build a
panel data set by appending. The NCES IPEDS data files generally work like this.

However, it’s incumbent upon you as the researcher to understand your data. Just because you are able to
append (R will try to make it work for you) doesn’t mean you always should. What if the score column in
our data weren’t on the same scale? What if the test date mattered but isn’t included in the file? What if
the files actually represent scores from different grades or schools? It’s possible that we can account for each
of these issues as we clean our data, but it won’t happen automatically — append with care!

Example
Let’s practice with an example. First, we’ll read in three data files from the by_school directory.

input

read in data, storing in df_*, where * is a unique number
df_1 <- read_csv(file.path(bys_dir, "bend_gate_1980.csv"))

Parsed with column specification:
cols(

school = col_character(),
year = col_double(),
math = col_double(),
read = col_double(),
science = col_double()

)

df_2 <- read_csv(file.path(bys_dir, "bend_gate_1981.csv"))

Parsed with column specification:
cols(

school = col_character(),
year = col_double(),
math = col_double(),
read = col_double(),
science = col_double()

)

df_3 <- read_csv(file.path(bys_dir, "bend_gate_1982.csv"))

Parsed with column specification:
cols(

school = col_character(),
year = col_double(),
math = col_double(),
read = col_double(),
science = col_double()

)

Looking at each, we can see that they are similarly structured, with the following columns in the same order:
school, year, math, read, science:

process

3

show each
df_1

A tibble: 1 x 5
school year math read science
<chr> <dbl> <dbl> <dbl> <dbl>

1 Bend Gate 1980 515 281 808

df_2

A tibble: 1 x 5
school year math read science
<chr> <dbl> <dbl> <dbl> <dbl>

1 Bend Gate 1981 503 312 814

df_3

A tibble: 1 x 5
school year math read science
<chr> <dbl> <dbl> <dbl> <dbl>

1 Bend Gate 1982 514 316 816

From the dplyr library, we use the bind_rows() function to append the second and third data frames to the
first.
append files
df <- bind_rows(df_1, df_2, df_3)

show
df

A tibble: 3 x 5
school year math read science
<chr> <dbl> <dbl> <dbl> <dbl>

1 Bend Gate 1980 515 281 808
2 Bend Gate 1981 503 312 814
3 Bend Gate 1982 514 316 816

That’s it!

Quick exercise Read in the rest of the files for Bend Gate and append them to the current
data frame.

Joining data
More often than appending your data files, however, you will need to merge or join them. With a join, you
add to your data frame new columns (new variables) that come from a second data frame. The key difference
between joining and appending is that a join requires a key, that is, a variable or index common to each
data frame that uniquely identifies observations. It’s this key that’s used to line everything up.

For example, say you have these two data sets,

id sch year score
A 1 2020 98
B 1 2020 95

4

https://dplyr.tidyverse.org/reference/bind.html

id sch year score
C 2 2020 85
D 3 2020 94

sch type
1 elementary
2 middle
3 high

and you want to add the school type to the first data set. You can do this because you have a common key
between each set: sch. A pseudocode description of this join would be:

1. Add a column to the first data frame called type
2. Fill in each row of the new column with the type value that corresponds to the matching sch value in

both data frames:
• sch == 1 --> elementary
• sch == 2 --> middle
• sch == 3 --> high

The end result would then look like this:

id sch year score type
A 1 2020 98 elementary
B 1 2020 95 elementary
C 2 2020 85 middle
D 3 2020 94 high

Example
A common join task in education research involves adding group-level aggregate statistics to individual
observations: for example, adding school-level average test scores to each student’s row. With a panel data
set (observations across time), we might want within-year averages added to each unit-by-time period row.
Let’s do the second, adding within-year across school average test scores to each school-by-year observation.

input

read in all_schools data
df <- read_csv(file.path(sch_dir, "all_schools.csv"))

Parsed with column specification:
cols(

school = col_character(),
year = col_double(),
math = col_double(),
read = col_double(),
science = col_double()

)

Looking at the data, we see that it’s similar to what we’ve seen above, with additional schools.

5

show
df

A tibble: 24 x 5
school year math read science
<chr> <dbl> <dbl> <dbl> <dbl>

1 Bend Gate 1980 515 281 808
2 Bend Gate 1981 503 312 814
3 Bend Gate 1982 514 316 816
4 Bend Gate 1983 491 276 793
5 Bend Gate 1984 502 310 788
6 Bend Gate 1985 488 280 789
7 East Heights 1980 501 318 782
8 East Heights 1981 487 323 813
9 East Heights 1982 496 294 818

10 East Heights 1983 497 306 795
… with 14 more rows

Our task is two-fold:

1. Get the average of each test score (math, reading, science) across all schools within each year and save
the summary data frame in an object.

2. Join the new summary data frame to the original data frame.

1. Get summary

process

get test score summary
df_sum <- df %>%

grouping by year so average within each year
group_by(year) %>%
get mean(<score>) for each test
summarize(math_m = mean(math),

read_m = mean(read),
science_m = mean(science))

show
df_sum

A tibble: 6 x 4
year math_m read_m science_m

<dbl> <dbl> <dbl> <dbl>
1 1980 507 295. 798.
2 1981 496. 293. 788.
3 1982 506 302. 802.
4 1983 500 293. 794.
5 1984 490 300. 792.
6 1985 500. 290. 794.

Quick exercise Thinking ahead, why do you think we created new names for the summarized
columns? Why the _m ending?

6

2. Join

While one can merge using base R, dplyr uses the SQL language of joins, which can be conceptually clearer
(particularly for those who already have experience with relational database structures). Here are the most
common joins you will use:

• left_join(x, y): keep all x, drop unmatched y
• right_join(x, y): keep all y, drop unmatched x
• inner_join(x, y): keep only matching
• full_join(x, y): keep everything

For example, the result of a left join between data frame X and data frame Y will include all observations
in X and those in Y that are also in X.

X

id col_A col_B
001 a 1
002 b 2
003 a 3

Y

id col_C col_D
001 T 9
002 T 9
004 F 9

XY (result of left join)

7

https://stat.ethz.ch/R-manual/R-devel/library/base/html/merge.html
https://en.wikipedia.org/wiki/Join_(SQL)

id col_A col_B col_C col_D
001 a 1 T 9
002 b 2 T 9
003 a 3 NA NA

Observations in both X and Y (001 and 002, above), will have data for the columns that were separately
in X and Y before. Those in X only (003), will have missing values in the new columns that came from Y
because they didn’t exist there. Observations in Y but not X (004) are dropped entirely.

Back to our example…

Since we want to join a smaller aggregated data frame, df_sum, to the original data frame, df, we’ll use a
left_join(). The join functions will try to guess the joining variable (and tell you what it picked) if you
don’t supply one, but we’ll specify one to be clear.
start with data frame...
df_joined <- df %>%

pipe into left_join to join with df_sum using "year" as key
left_join(df_sum, by = "year")

show
df_joined

A tibble: 24 x 8
school year math read science math_m read_m science_m
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Bend Gate 1980 515 281 808 507 295. 798.
2 Bend Gate 1981 503 312 814 496. 293. 788.
3 Bend Gate 1982 514 316 816 506 302. 802.
4 Bend Gate 1983 491 276 793 500 293. 794.
5 Bend Gate 1984 502 310 788 490 300. 792.
6 Bend Gate 1985 488 280 789 500. 290. 794.
7 East Heights 1980 501 318 782 507 295. 798.
8 East Heights 1981 487 323 813 496. 293. 788.
9 East Heights 1982 496 294 818 506 302. 802.

10 East Heights 1983 497 306 795 500 293. 794.
… with 14 more rows

Quick exercise Look at the first 10 rows of df_joined. What do you notice about the new
summary columns we added?

Reshaping data
Reshaping data is a common data wrangling task. Whether going from wide to long format or long to wide,
it can be a painful process. But with a little practice, the ability to reshape data will become a powerful
tool in your toolbox.

Definitions
While there are various definitions of tabular data structure, the two you will most often come across are
wide and long. Wide data are data structures in which all variable/values are columns. At the extreme
end, every id will only have a single row:

8

https://en.wikipedia.org/wiki/Wide_and_narrow_data

id math_score_2019 read_score_2019 math_score_2020 read_score_2020
A 93 88 92 98
B 99 92 97 95
C 89 88 84 85

Notice how each particular score (by year) has its own column? Compare this to long data in which each
observational unit (id test score within a given year) will have a row:

id year test score
A 2019 math 93
A 2019 read 88
A 2020 math 92
A 2020 read 98
B 2019 math 99
B 2019 read 92
B 2020 math 97
B 2020 read 95
C 2019 math 89
C 2019 read 88
C 2020 math 84
C 2020 read 85

The first wide and second long table present the same information in a different format. So why bother
reshaping? The short answer is that you sometimes need one format and sometimes the other due to the
demands of the analysis you want to run, the figure you want to plot, or the table you want to make.

NB: Data in the wild are often some combination of these two types: wide-ish or long-ish. For an example,
see our all_schools.csv data below, which is wide in some variables (test), but long in others (year). The
point of defining long vs wide is not to have a testable definition, but rather to have a framework for thinking
about how your data are structured and if that structure will work for your data analysis needs.

Example: wide –> long
To start, we’ll go back to the all_schools.csv file.

input

reading again just to be sure we have the original data
df <- read_csv(file.path(sch_dir, "all_schools.csv"))

Parsed with column specification:
cols(

school = col_character(),
year = col_double(),
math = col_double(),
read = col_double(),
science = col_double()

)

Notice how the data are wide in test: each school has one row per year, but each test gets its own column.
While this setup can be efficient for storage, it’s not always the best for analysis or even just browsing. What

9

we want is for the data to be long.

Instead of each test having its own column, we would like to make the data look like our long data example
above, with each row representing a single school, year, test, score:

school year test score
Bend Gate 1980 math 515
Bend Gate 1980 read 281
Bend Gate 1980 science 808
… … … …

As with joins, you can reshape data frames using base R commands. But again, we’ll use tidyverse functions
in the tidyr library. Specifically, we’ll rely on the tidyr pivot_longer() and pivot_wider() commands.

pivot_longer()

The pivot_longer() function can take a number of arguments, but the core things it needs to know are:

• data: the name of the data frame you’re reshaping (we can use %>% to pipe in the data name)
• cols: the names of the columns that you want to pivot into values of a single new column (thereby

making the data frame “longer”)
• names_to: the name of the new column that will contain the names of the cols you just listed
• values_to: the name of the column where the values in the cols you listed will go

In our current situation, our cols to pivot are "math", "read", and "science". Since they are test types, we’ll
call our names_to column "test" and our values_to column "score".

process

wide to long
df_long <- df %>%

cols: current test columns
names_to: where "math", "read", and "science" will go
values_to: where the values in cols will go
pivot_longer(cols = c("math","read","science"),

names_to = "test",
values_to = "score")

show
df_long

A tibble: 72 x 4
school year test score
<chr> <dbl> <chr> <dbl>

1 Bend Gate 1980 math 515
2 Bend Gate 1980 read 281
3 Bend Gate 1980 science 808
4 Bend Gate 1981 math 503
5 Bend Gate 1981 read 312
6 Bend Gate 1981 science 814
7 Bend Gate 1982 math 514
8 Bend Gate 1982 read 316
9 Bend Gate 1982 science 816

10

https://stats.idre.ucla.edu/r/faq/how-can-i-reshape-my-data-in-r/
http://tidyr.tidyverse.org

10 Bend Gate 1983 math 491
… with 62 more rows

Quick (ocular test) exercise How many rows did our initial data frame df have? How many
unique tests did we have in each year? When reshaping from wide to long, how many rows should
we expect our new data frame to have? Does our new data frame have that many rows?

Example: long –> wide
pivot_wider()

Now that we have our long data, let’s reshape it back to wide format using pivot_wider(). In this case,
we’re doing just the opposite from before — here are the main arguments you need to attend to:

• data: the name of the data frame you’re reshaping (we can use %>% to pipe in the data name)
• names_from: the name of the column that contains the values which will become new column names
• values_from: the name of the column that contains the values associated with the values in names_from

column; these will go into the new columns.

process

long to wide
df_wide <- df_long %>%

names_from: values in this column will become new column names
values_from: values in this column will become values in new cols
pivot_wider(names_from = "test",

values_from = "score")

show
df_wide

A tibble: 24 x 5
school year math read science
<chr> <dbl> <dbl> <dbl> <dbl>

1 Bend Gate 1980 515 281 808
2 Bend Gate 1981 503 312 814
3 Bend Gate 1982 514 316 816
4 Bend Gate 1983 491 276 793
5 Bend Gate 1984 502 310 788
6 Bend Gate 1985 488 280 789
7 East Heights 1980 501 318 782
8 East Heights 1981 487 323 813
9 East Heights 1982 496 294 818

10 East Heights 1983 497 306 795
… with 14 more rows

Quick exercise In this case, our new wide data frame, df_wide, should be the same as our
initial data frame. Is it? How can you tell?

11

Example: wide –> long with corrections
Unfortunately, it’s not always so clear cut to reshape data. In this second example, we’ll again reshape from
wide to long, but we’ll have to munge our data a bit after the reshape to make it analysis ready.

First, we’ll read in a second file all_schools_wide.csv. This file contains the same information as before,
but in a very wide format: each school has only one row and each test by year value gets its own column in
the form <test>_<year>.

input

read in very wide test score data
df <- read_csv(file.path(sch_dir, "all_schools_wide.csv"))

Parsed with column specification:
cols(

school = col_character(),
math_1980 = col_double(),
read_1980 = col_double(),
science_1980 = col_double(),
math_1981 = col_double(),
read_1981 = col_double(),
science_1981 = col_double(),
math_1982 = col_double(),
read_1982 = col_double(),
science_1982 = col_double(),
math_1983 = col_double(),
read_1983 = col_double(),
science_1983 = col_double(),
math_1984 = col_double(),
read_1984 = col_double(),
science_1984 = col_double(),
math_1985 = col_double(),
read_1985 = col_double(),
science_1985 = col_double()

)

show
df

A tibble: 4 x 19
school math_1980 read_1980 science_1980 math_1981 read_1981 science_1981
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Bend … 515 281 808 503 312 814
2 East … 501 318 782 487 323 813
3 Niaga… 514 292 787 499 268 762
4 Spott… 498 288 813 494 270 765
… with 12 more variables: math_1982 <dbl>, read_1982 <dbl>,
science_1982 <dbl>, math_1983 <dbl>, read_1983 <dbl>, science_1983 <dbl>,
math_1984 <dbl>, read_1984 <dbl>, science_1984 <dbl>, math_1985 <dbl>,
read_1985 <dbl>, science_1985 <dbl>

Second, we can pivot_longer() as we did before using the following values for our key arguments:

• data : df (but piped in using %>%)
• cols : use special tidyselect helper function contains() to select all test by year columns

12

https://www.rdocumentation.org/packages/tidyselect/versions/1.0.0/topics/select_helpers

• names_to: test_year
• values_to: score

process

wide to long
df_long <- df %>%

NB: contains() looks for "19" in name: if there, it adds it to cols
pivot_longer(cols = contains("19"),

names_to = "test_year",
values_to = "score")

show
df_long

A tibble: 72 x 3
school test_year score
<chr> <chr> <dbl>

1 Bend Gate math_1980 515
2 Bend Gate read_1980 281
3 Bend Gate science_1980 808
4 Bend Gate math_1981 503
5 Bend Gate read_1981 312
6 Bend Gate science_1981 814
7 Bend Gate math_1982 514
8 Bend Gate read_1982 316
9 Bend Gate science_1982 816

10 Bend Gate math_1983 491
… with 62 more rows

Quick exercise Why did we use “19” as our value in the contains() function? HINT: use the
names() function to return a list of the original data frame (df) column names.

This mostly worked to get our data long, but now we have this weird combined test_year column. What
we really want are two columns, one for the year and one for the test type. We can fix this using tidyr
separate() function with the following arguments:

• data: our df_long object, piped in using %>%
• col: the column we want to split (test_year)
• into: the names of the new columns to create from col (test and year)
• sep: the name of the character that splits the values in col, so R knows how to fill each of the into

columns ("_")
separate test_year into two columns, filling appropriately
df_long_fix <- df_long %>%

col: the column to split
into: names of resulting splits
sep: the split point --> left to "test", right to "year"
separate(col = "test_year",

into = c("test", "year"),
sep = "_")

13

https://tidyr.tidyverse.org/reference/separate.html
https://tidyr.tidyverse.org/reference/separate.html

show
df_long_fix

A tibble: 72 x 4
school test year score
<chr> <chr> <chr> <dbl>

1 Bend Gate math 1980 515
2 Bend Gate read 1980 281
3 Bend Gate science 1980 808
4 Bend Gate math 1981 503
5 Bend Gate read 1981 312
6 Bend Gate science 1981 814
7 Bend Gate math 1982 514
8 Bend Gate read 1982 316
9 Bend Gate science 1982 816

10 Bend Gate math 1983 491
… with 62 more rows

Quick exercise Redo the last few steps in a single combined chain using pipes. That is, start
with df (which contains all_schools_wide.csv), reshape long, and fix so that you end up with
four columns — all in a single piped chain.

Final note
Just as all data sets are unique, so too are the particular steps you may need to take to append, join, or
reshape your data. Even experienced coders rarely get all the steps correct the first try. Be prepared to
spend time getting to know your data and figuring out, through trial and error, how to wrangle it so that it
meets your analytic needs. Code books, institutional/domain knowledge, and patience are your friends here!

14

	Data
	Setup
	Appending data
	Example

	Joining data
	Example
	1. Get summary
	2. Join

	Reshaping data
	Definitions
	Example: wide –> long
	pivot_longer()

	Example: long –> wide
	pivot_wider()

	Example: wide –> long with corrections

	Final note

