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After your data have been wrangled from raw values to an analysis data set and you’ve explored it with
summary statistics and graphics, you are ready to model it and begin making inferences. As one should
expect from a statistical language, R has a powerful system for fitting statistical and econometric models.

Because the purpose of this course is to learn and practice using a good quantitative work flow, we won’t
spend time much time interpreting the results from our inferential models. Instead, this lesson will give you
the basic understanding you need to run correlations, t-tests, and regressions in R as well as give a quick
overview of how to use survey weights, make predictions, and compute marginal effects. That said, the
lessons you’ve learned in other courses about proper statistical practice still stand — this lesson should help
you apply what you’ve learned before.

Data
In this lesson, we’ll use data from the NCES Education Longitudinal Study of 2002. Much like HSLS, ELS
is a nationally representative survey that initially surveyed students in their early high school career (10th
grade in 2002) and followed them into college and the workforce. We’ll again use a smaller version of the
data, so be sure to get the full data files if you decide to use ELS in a future project. One additional benefit
of ELS is that the public use files contain the weights we’ll use to properly account for the survey design
later in the lesson.

Here’s a codebook with descriptions of the variables included in our lesson today:

variable description
stu_id student id
sch_id school id
strat_id stratum
psu primary sampling unit
bystuwt student weight
bysex sex-composite
byrace student’s race/ethnicity-composite
bydob_p student’s year and month of birth
bypared parents’ highest level of education
bymothed mother’s highest level of education-composite
byfathed father’s highest level of education-composite
byincome total family income from all sources 2001-composite
byses1 socio-economic status composite, v.1
byses2 socio-economic status composite, v.2
bystexp how far in school student thinks will get-composite
bynels2m els-nels 1992 scale equated sophomore math score
bynels2r els-nels 1992 scale equated sophomore reading score
f1qwt questionnaire weight for f1
f1pnlwt panel weight, by and f1 (2002 and 2004)
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variable description
f1psepln f1 post-secondary plans right after high school
f2ps1sec Sector of first postsecondary institution
female == 1 if female
moth_ba == 1 if mother has BA/BS
fath_ba == 1 if father has BA/BS
par_ba == 1 if either parent has BA/BS
plan_col_grad == 1 if student plans to earn college degree
lowinc == 1 if income < $25k

Let’s load the libraries and data!

…but first! You’ll most likely need to install the survey package first, using install.packages("survey").
## ---------------------------
## libraries
## ---------------------------

library(tidyverse)

── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──

✔ ggplot2 3.3.2 ✔ purrr 0.3.4
✔ tibble 3.0.2 ✔ dplyr 1.0.0
✔ tidyr 1.1.0 ✔ stringr 1.4.0
✔ readr 1.3.1 ✔ forcats 0.5.0

── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()

library(haven)
library(survey)

Loading required package: grid

Loading required package: Matrix

Attaching package: 'Matrix'

The following objects are masked from 'package:tidyr':

expand, pack, unpack

Loading required package: survival

Attaching package: 'survey'

The following object is masked from 'package:graphics':

dotchart

## ---------------------------
## directory paths
## ---------------------------

## assume we're running this script from the ./scripts subdirectory
dat_dir <- file.path("..", "data")
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## ---------------------------
## input data
## ---------------------------

## assume we're running this script from the ./scripts subdirectory
df <- read_dta(file.path(dat_dir, "els_plans.dta"))

Correlations
In prior lessons, we’ve visually checked for correlations between variables through plotting. We can also
produce more formal tests of correlation using R’s cor() function. By default, it gives us the Pearson
correlation coefficient, though we can also use it to return other versions.

First, let’s check the correlation between math and reading scores. Because this is a base R function, we’ll
need to use df$ notation. We’ll also need to be explicit about removing missing values with the argument, use
= "complete.obs" (one of the few annoying function options that doesn’t really match how other functions
work).
## correlation between math and reading scores
cor(df$bynels2m, df$bynels2r, use = "complete.obs")

[1] 0.7521538

As we might have hypothesized, there is a strong positive correlation between math and reading scores.

We can also build a correlation matrix if we give cor() a data frame. Our data set, though smaller than the
full ELS data set, is still rather large. We’ll only check the correlations between a few variables. In this next
example, I’ll show you how you might do this using the tidyverse way we’ve used in other lessons.
## correlation between various columns, using pipes
df %>%

## select a few variables
select(byses1, bynels2m, bynels2r, par_ba) %>%
## use a . to be the placeholder for the piped in data.frame
cor(., use = "complete.obs")

byses1 bynels2m bynels2r par_ba
byses1 1.0000000 0.4338441 0.4315718 0.7041740
bynels2m 0.4338441 1.0000000 0.7490148 0.2980608
bynels2r 0.4315718 0.7490148 1.0000000 0.2865717
par_ba 0.7041740 0.2980608 0.2865717 1.0000000

Per our expectations, the main diagonal is all 1s — every variable is perfectly correlated with itself — and the
mirror cells on either side of the line are the same: [2,1] == [1,2] because the correlation between bynels2m
and byses1 is the same as byses1 and bynels2m (the order doesn’t matter).

t-test
One common statistical test is a t-test for a difference in means across groups (there are, of course, other
types of t-tests that R can compute). This version of the test can be computed using the R formula syntax:
y ~ x. In our example, we’ll compute base-year math scores against parent’s college education level. Notice
that since we have the data = df argument after the comma, we don’t need to include df$ before the two
variables.
## t-test of difference in math scores across parental education (BA/BA or not)
t.test(bynels2m ~ par_ba, data = df, var.equal = TRUE)
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Two Sample t-test

data: bynels2m by par_ba
t = -38.54, df = 15234, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-8.669138 -7.830008

sample estimates:
mean in group 0 mean in group 1

41.97543 50.22501

Looking at the bottom of the output, we see the mean math scores across the two groups:

• Math score of 41.9754334 for students for whom neither parent has a Bachelor’s degree or higher
• Math score of 50.2250064 for students for whom at least one parent has a Bachelor’s degree or higher

Are these differences statistically meaningful? Looking in the third line, we see a large t stat of -38.54
which is highly statistically significant at conventional levels. Taken together, we can say that among this
sample of students, those from households in which at least one parent had a Bachelor’s degree or higher
tended to score higher on the math exam than their peers whose parents did not have a Bachelor’s degree
or higher. Furthermore, this result is statistically significant, meaning that we can reject the null that there
is no difference between the groups, that is, the difference we observe is just sampling noise.

Is the difference practically significant? Maybe, but to really know that we need to understand more about
the design and scaling of the math test. Once we do, we can apply our content-area knowledge and place
our findings in their proper context.

Quick exercise Run a t-test of reading scores against whether the father has a Bachelor’s
degree (fath_ba).

Linear model
Linear models are the go-to method of making inferences for many data analysts. In R, the lm() command
is used to compute an ordinary least squares (OLS) regression. Unlike above, where we just let the t.test()
output print to the console, we can and will store the output in an object.

First, let’s compute the same t-test but in a regression framework. Because we assumed equal variances
between the distributions in the t-test above (var.equal = TRUE), we should get the same results as we did
before.
## compute same test as above, but in a linear model
fit <- lm(bynels2m ~ par_ba, data = df)
fit

Call:
lm(formula = bynels2m ~ par_ba, data = df)

Coefficients:
(Intercept) par_ba

41.98 8.25

The output is a little thin: just the coefficients. To see the full range of information you want from regression
output, use the summary() function wrapped around the fit object.
## use summary to see more information about regression
summary(fit)
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Call:
lm(formula = bynels2m ~ par_ba, data = df)

Residuals:
Min 1Q Median 3Q Max

-35.515 -9.685 0.595 9.885 37.015

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.9754 0.1375 305.35 <2e-16 ***
par_ba 8.2496 0.2141 38.54 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13.01 on 15234 degrees of freedom
(924 observations deleted due to missingness)

Multiple R-squared: 0.08884, Adjusted R-squared: 0.08878
F-statistic: 1485 on 1 and 15234 DF, p-value: < 2.2e-16

We’ll more fully discuss this output in the next section. For now, let’s compare the key findings to those
returned from the t test.

Because our right-hand side (RHS) variable is an indicator variable that == 0 for parents without a BA/BS
or higher and == 1 if either parent has a BA/BS or higher, then the intercept reflects the math test score
for students when par_ba == 0. This matches the mean in group 0 value from the t test above.

In a regression framework, the coefficient on par_ba is the marginal difference when par_ba increases by one
unit. Since pared is the only parameter on the RHS (besides the intercept) and only takes on values 0 and
1, we can add its coefficient to the intercept to get the math test score mean for students with parents with
a BA/BS or higher.
## add intercept and par_ba coefficient
fit$coefficients[["(Intercept)"]] + fit$coefficients[["par_ba"]]

[1] 50.22501

Looks like this value matches what we saw before (within rounding). Going the other way, the coefficient
on par_ba, 8.2495729, is the same as the difference between the groups in the t test. Finally, notice that
the absolute value of the test statistic for the t test and the par_ba coefficient are the same value: 38.54.
Success!

Multiple regression
To fit a multiple regression, use the same formula framework that we’ve use before with the addition of all
the terms you want on right-hand side of the equation separated by plus (+) signs.

NB From here on out, we’ll spend less time interpreting the regression results so that we can focus on the
tools of running regressions. That said, let me know if you have questions of interpretation.
## linear model with more than one covariate on the RHS
fit <- lm(bynels2m ~ byses1 + female + moth_ba + fath_ba + lowinc,

data = df)
summary(fit)

Call:
lm(formula = bynels2m ~ byses1 + female + moth_ba + fath_ba +

lowinc, data = df)
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Residuals:
Min 1Q Median 3Q Max

-39.456 -8.775 0.432 9.110 40.921

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 45.7155 0.1811 252.420 < 2e-16 ***
byses1 6.8058 0.2387 28.511 < 2e-16 ***
female -1.1483 0.1985 -5.784 7.42e-09 ***
moth_ba 0.4961 0.2892 1.715 0.08631 .
fath_ba 0.8242 0.2903 2.840 0.00452 **
lowinc -2.1425 0.2947 -7.271 3.75e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12.24 on 15230 degrees of freedom
(924 observations deleted due to missingness)

Multiple R-squared: 0.1929, Adjusted R-squared: 0.1926
F-statistic: 728.1 on 5 and 15230 DF, p-value: < 2.2e-16

The full output tells you:

• the model that you fit, under Call:
• a table of coefficients with

– the point estimates (Estimate)
– the point estimate errors (Std. Error)
– the test statistic for each point estimate (t value with this model)
– the p value for each point estimate (Pr(>|t|))

• significance stars (. and *) along with legend
• the R-squared values (Multiple R-squared and Adjusted R-squared)
• the model F-statistic (F-statistic)
• number of observations dropped if any

If observations were dropped due to missing values (lm() does this automatically by default), you can recover
the number of observations actually used with the nobs() function.
## check number of observations
nobs(fit)

[1] 15236

The fit object also holds a lot of other information that is sometimes useful.
## see what fit object holds
names(fit)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "na.action" "xlevels" "call" "terms"

[13] "model"

In addition to the coefficients, which you pulled out of the first model, both fitted.values and residuals
are stored in the object. You can access these “hidden” attributes by treating the fit object like a data
frame and using the $ notation.
## see first few fitted values and residuals
head(fit$fitted.values)

1 2 3 4 5 6
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42.86583 48.51465 38.78234 36.98010 32.82855 38.43332

head(fit$residuals)

1 2 3 4 5 6
4.974173 6.785347 27.457659 -1.650095 -2.858552 -14.153323

Quick exercise Add the fitted values to the residuals and store in an object (x). Compare
these values to the math scores in the data frame.

As a final note, the model matrix used fit the regression can be retrieved using model.matrix(). Since we
have a lot of observations, we’ll just look at the first few rows.
## see the design matrix
head(model.matrix(fit))

(Intercept) byses1 female moth_ba fath_ba lowinc
1 1 -0.25 1 0 0 0
2 1 0.58 1 0 0 0
3 1 -0.85 1 0 0 0
4 1 -0.80 1 0 0 1
5 1 -1.41 1 0 0 1
6 1 -1.07 0 0 0 0

What this shows is that the fit object actually stores a copy of the data used to run it. That’s really
convenient if you want to save the object to disk (with the save() function) so you can review the regression
results later. But keep in mind that if you share that file, you are sharing the part of the data used to
estimate it. Because a lot of education data is restricted in some way — via MOUs or IRB — be careful
about sharing the saved output object. Typically you’ll only share the results in a table or figure, but just
be aware.

Using categorical variables or factors
It’s not necessary to pre-construct dummy variables if you want to use a categorical variable in your model.
Instead you can use the categorical variable wrapped in the factor() function. This tells R that the under-
lying variable shouldn’t be treated as a continuous value, but should be discrete groups. R will make the
dummy variables on the fly when fitting the model. We’ll include the categorical variable bystexp in this
model.
## check values of student expectations
df %>%

count(bystexp)

# A tibble: 9 x 2
bystexp n

<dbl+lbl> <int>
1 -1 [{don^t know}] 1450
2 1 [less than high school graduation] 128
3 2 [high school graduation or ged only] 983
4 3 [attend or complete 2-year college/school] 879
5 4 [attend college, 4-year degree incomplete] 561
6 5 [graduate from college] 5416
7 6 [obtain master^s degree or equivalent] 3153
8 7 [obtain phd, md, or other advanced degree] 2666
9 NA 924
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Even though student expectations of eventual degree attainment are roughly ordered, let’s use them in our
model as discrete groups. That way we can leave in “Don’t know” and don’t have to worry about that “attend
college, 4-year degree incomplete” is somehow higher than “attend or complete 2-year college/school”.
## add factors
fit <- lm(bynels2m ~ byses1 + female + moth_ba + fath_ba

+ lowinc + factor(bystexp),
data = df)

summary(fit)

Call:
lm(formula = bynels2m ~ byses1 + female + moth_ba + fath_ba +

lowinc + factor(bystexp), data = df)

Residuals:
Min 1Q Median 3Q Max

-41.680 -8.267 0.541 8.423 38.696

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.9534 0.3366 127.603 < 2e-16 ***
byses1 5.1616 0.2297 22.468 < 2e-16 ***
female -2.3828 0.1909 -12.481 < 2e-16 ***
moth_ba 0.4119 0.2742 1.502 0.1331
fath_ba 0.6250 0.2754 2.270 0.0232 *
lowinc -2.2017 0.2794 -7.880 3.50e-15 ***
factor(bystexp)1 -10.0569 1.0710 -9.390 < 2e-16 ***
factor(bystexp)2 -5.4527 0.4813 -11.329 < 2e-16 ***
factor(bystexp)3 -1.2000 0.4966 -2.416 0.0157 *
factor(bystexp)4 -3.5317 0.5771 -6.119 9.62e-10 ***
factor(bystexp)5 3.6345 0.3446 10.546 < 2e-16 ***
factor(bystexp)6 7.6366 0.3736 20.442 < 2e-16 ***
factor(bystexp)7 7.5114 0.3860 19.460 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11.6 on 15223 degrees of freedom
(924 observations deleted due to missingness)

Multiple R-squared: 0.2754, Adjusted R-squared: 0.2748
F-statistic: 482.1 on 12 and 15223 DF, p-value: < 2.2e-16

If you’re using labeled data like we have been for the past couple of modules, you can use the as_factor()
function from the haven library in place of the base factor() function. You’ll still see the as_factor(<var>)
prefix on each coefficient, but now you’ll have labels instead of the underlying values, which should make
parsing the output a little easier.
## same model, but use as_factor() instead of factor() to use labels
fit <- lm(bynels2m ~ byses1 + female + moth_ba + fath_ba

+ lowinc + as_factor(bystexp),
data = df)

summary(fit)

Call:
lm(formula = bynels2m ~ byses1 + female + moth_ba + fath_ba +

lowinc + as_factor(bystexp), data = df)
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Residuals:
Min 1Q Median 3Q Max

-41.680 -8.267 0.541 8.423 38.696

Coefficients:
Estimate Std. Error

(Intercept) 42.9534 0.3366
byses1 5.1616 0.2297
female -2.3828 0.1909
moth_ba 0.4119 0.2742
fath_ba 0.6250 0.2754
lowinc -2.2017 0.2794
as_factor(bystexp)less than high school graduation -10.0569 1.0710
as_factor(bystexp)high school graduation or ged only -5.4527 0.4813
as_factor(bystexp)attend or complete 2-year college/school -1.2000 0.4966
as_factor(bystexp)attend college, 4-year degree incomplete -3.5317 0.5771
as_factor(bystexp)graduate from college 3.6345 0.3446
as_factor(bystexp)obtain master^s degree or equivalent 7.6366 0.3736
as_factor(bystexp)obtain phd, md, or other advanced degree 7.5114 0.3860

t value Pr(>|t|)
(Intercept) 127.603 < 2e-16 ***
byses1 22.468 < 2e-16 ***
female -12.481 < 2e-16 ***
moth_ba 1.502 0.1331
fath_ba 2.270 0.0232 *
lowinc -7.880 3.50e-15 ***
as_factor(bystexp)less than high school graduation -9.390 < 2e-16 ***
as_factor(bystexp)high school graduation or ged only -11.329 < 2e-16 ***
as_factor(bystexp)attend or complete 2-year college/school -2.416 0.0157 *
as_factor(bystexp)attend college, 4-year degree incomplete -6.119 9.62e-10 ***
as_factor(bystexp)graduate from college 10.546 < 2e-16 ***
as_factor(bystexp)obtain master^s degree or equivalent 20.442 < 2e-16 ***
as_factor(bystexp)obtain phd, md, or other advanced degree 19.460 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11.6 on 15223 degrees of freedom
(924 observations deleted due to missingness)

Multiple R-squared: 0.2754, Adjusted R-squared: 0.2748
F-statistic: 482.1 on 12 and 15223 DF, p-value: < 2.2e-16

If you look at the model matrix, you can see how R created the dummy variables from bystexp: adding new
columns of only 0/1s that correspond to the bystexp value of each student.
## see what R did under the hood to convert categorical to dummies
head(model.matrix(fit))

(Intercept) byses1 female moth_ba fath_ba lowinc
1 1 -0.25 1 0 0 0
2 1 0.58 1 0 0 0
3 1 -0.85 1 0 0 0
4 1 -0.80 1 0 0 1
5 1 -1.41 1 0 0 1
6 1 -1.07 0 0 0 0

as_factor(bystexp)less than high school graduation
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1 0
2 0
3 0
4 0
5 0
6 0

as_factor(bystexp)high school graduation or ged only
1 0
2 0
3 0
4 0
5 0
6 0

as_factor(bystexp)attend or complete 2-year college/school
1 1
2 0
3 0
4 0
5 0
6 0

as_factor(bystexp)attend college, 4-year degree incomplete
1 0
2 0
3 0
4 0
5 0
6 1

as_factor(bystexp)graduate from college
1 0
2 0
3 0
4 1
5 1
6 0

as_factor(bystexp)obtain master^s degree or equivalent
1 0
2 0
3 0
4 0
5 0
6 0

as_factor(bystexp)obtain phd, md, or other advanced degree
1 0
2 1
3 0
4 0
5 0
6 0

Quick exercise Add the categorical variable byincome to the model above. Next use
model.matrix() to check the RHS matrix.
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Interactions
Add interactions to a regression using an asterisks (*) between the terms you want to interact. This will
add both main terms and the interaction(s) between the two to the model. Any interaction terms will be
labeled using the base name or factor name of each term joined by a colon (:).
## add interactions
fit <- lm(bynels2m ~ byses1 + factor(bypared)*lowinc, data = df)
summary(fit)

Call:
lm(formula = bynels2m ~ byses1 + factor(bypared) * lowinc, data = df)

Residuals:
Min 1Q Median 3Q Max

-38.998 -8.852 0.326 9.063 39.257

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.0084 0.6345 69.355 < 2e-16 ***
byses1 7.6082 0.2772 27.448 < 2e-16 ***
factor(bypared)2 1.5546 0.6544 2.376 0.017533 *
factor(bypared)3 0.6534 0.7136 0.916 0.359863
factor(bypared)4 1.8902 0.7198 2.626 0.008646 **
factor(bypared)5 1.5059 0.7200 2.091 0.036501 *
factor(bypared)6 1.4527 0.7386 1.967 0.049235 *
factor(bypared)7 2.0044 0.8286 2.419 0.015569 *
factor(bypared)8 0.8190 0.9239 0.887 0.375360
lowinc 2.0347 0.8112 2.508 0.012140 *
factor(bypared)2:lowinc -2.9955 0.9298 -3.222 0.001278 **
factor(bypared)3:lowinc -4.0551 1.0682 -3.796 0.000147 ***
factor(bypared)4:lowinc -4.8143 1.1126 -4.327 1.52e-05 ***
factor(bypared)5:lowinc -4.6890 1.0947 -4.283 1.85e-05 ***
factor(bypared)6:lowinc -4.5252 1.0556 -4.287 1.82e-05 ***
factor(bypared)7:lowinc -7.2222 1.3796 -5.235 1.67e-07 ***
factor(bypared)8:lowinc -9.8773 1.6110 -6.131 8.94e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12.23 on 15219 degrees of freedom
(924 observations deleted due to missingness)

Multiple R-squared: 0.1948, Adjusted R-squared: 0.194
F-statistic: 230.2 on 16 and 15219 DF, p-value: < 2.2e-16

Polynomials
To add quadratic and other polynomial terms to the model, use the I() function, which lets you raise the
term to the power you want in the regression using the caret (^) operator. In the model below, we add a
quadratic version of the reading score to the right-hand side.
## add polynomials
fit <- lm(bynels2m ~ bynels2r + I(bynels2r^2), data = df)
summary(fit)

Call:
lm(formula = bynels2m ~ bynels2r + I(bynels2r^2), data = df)
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Residuals:
Min 1Q Median 3Q Max

-33.462 -5.947 -0.156 5.780 46.645

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.7765815 0.6241194 20.471 <2e-16 ***
bynels2r 1.1197116 0.0447500 25.021 <2e-16 ***
I(bynels2r^2) -0.0006246 0.0007539 -0.828 0.407
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.921 on 15881 degrees of freedom
(276 observations deleted due to missingness)

Multiple R-squared: 0.5658, Adjusted R-squared: 0.5657
F-statistic: 1.035e+04 on 2 and 15881 DF, p-value: < 2.2e-16

Quick exercise Fit a linear model with both interactions and a polynomial term. Then look
at the model matrix to see what R did under the hood.

Generalized linear model for binary outcomes
In some cases when you have binary outcomes — 0/1 — it may be appropriate to continue using regular
OLS, fitting what is typically called a linear probability model or LPM. In those cases, just use lm() as you
have been.

But in other cases, you’ll want to fit a generalized linear model, in which case you’ll need to switch to the
glm() function. It is set up just like lm(), but it has an extra argument, family. Set the argument to
binomial() when your dependent variable is binary. By default, the link function is a logit link.
## logit
fit <- glm(plan_col_grad ~ bynels2m + as_factor(bypared),

data = df,
family = binomial())

summary(fit)

Call:
glm(formula = plan_col_grad ~ bynels2m + as_factor(bypared),

family = binomial(), data = df)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.6467 -0.9581 0.5211 0.7695 1.5815

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.824413 0.090000 -20.271 < 2e-16 ***
bynels2m 0.056427 0.001636 34.491 < 2e-16 ***
as_factor(bypared)hsged 0.042315 0.079973 0.529 0.5967
as_factor(bypared)att2yr 0.204831 0.088837 2.306 0.0211 *
as_factor(bypared)grad2ry 0.480828 0.092110 5.220 1.79e-07 ***
as_factor(bypared)att4yr 0.499019 0.090558 5.511 3.58e-08 ***
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as_factor(bypared)grad4yr 0.754817 0.084271 8.957 < 2e-16 ***
as_factor(bypared)ma 0.943558 0.101585 9.288 < 2e-16 ***
as_factor(bypared)phprof 1.052006 0.121849 8.634 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 17545 on 15235 degrees of freedom
Residual deviance: 15371 on 15227 degrees of freedom

(924 observations deleted due to missingness)
AIC: 15389

Number of Fisher Scoring iterations: 4

If you want a probit model, just change the link to probit.
## probit
fit <- glm(plan_col_grad ~ bynels2m + as_factor(bypared),

data = df,
family = binomial(link = "probit"))

summary(fit)

Call:
glm(formula = plan_col_grad ~ bynels2m + as_factor(bypared),

family = binomial(link = "probit"), data = df)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.7665 -0.9796 0.5238 0.7812 1.5517

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0522131 0.0539072 -19.519 < 2e-16 ***
bynels2m 0.0326902 0.0009357 34.938 < 2e-16 ***
as_factor(bypared)hsged 0.0325415 0.0488225 0.667 0.5051
as_factor(bypared)att2yr 0.1316456 0.0539301 2.441 0.0146 *
as_factor(bypared)grad2ry 0.2958810 0.0554114 5.340 9.31e-08 ***
as_factor(bypared)att4yr 0.3065176 0.0544813 5.626 1.84e-08 ***
as_factor(bypared)grad4yr 0.4553127 0.0505009 9.016 < 2e-16 ***
as_factor(bypared)ma 0.5525198 0.0588352 9.391 < 2e-16 ***
as_factor(bypared)phprof 0.6115358 0.0688820 8.878 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 17545 on 15235 degrees of freedom
Residual deviance: 15379 on 15227 degrees of freedom

(924 observations deleted due to missingness)
AIC: 15397

Number of Fisher Scoring iterations: 4
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Quick exercise Fit a logit or probit model to another binary outcome.

Using survey weights
So far we haven’t used survey weights, but they are very important if we want to make population-level
inferences using surveys with complex sampling designs. Yes, we can produce means, compute t-tests, and
fit regressions without weights, but our results may not be externally valid due the fact that observations in
our sample are almost certainly out of proportion to their occurrence in the population. Otherwise stated,
it’s likely that our sample under-represents some groups while over-representing others. The upshot is that
any unweighted estimates will be a function of what we observe (sample) and not necessarily what we want
(population). Furthermore, our standard errors — which we use when determining statistical significance —
may be incorrect if we don’t use survey weights, meaning that we may be more likely to commit Type I or
Type II errors.

So that we can make population-level inferences, survey designers often include weights that allow us to
adjust the amount each observation contributes to our estimates. With this adjustment our estimate should
better reflect the population value. To use survey weights, you’ll need to use the survey package (which
we’ve already loaded above).

As a first step, you need to set the survey design using the svydesign() function. You could do this in the
svymean() or svyglm() functions we’ll use to actually produce our weighted estimates, but it’s easier and
clearer to do it first, store it in an object, and then re-use that object.

ELS has a complex sampling design that we won’t get into, but the appropriate columns from our data
frame, df, are set to the proper arguments in svydesign():

• ids are the primary sampling units or psus

• strata are indicated by the strat_ids

• weight is the base-year student weight or bystuwt
• data is our data frame object, df
• nest = TRUE because the psus are nested in strat_ids

Finally, notice the ~ before each column name, which is necessary in this function.
## subset data
svy_df <- df %>%

select(psu, # primary sampling unit
strat_id, # stratum ID
bystuwt, # weight we want to use
bynels2m, # variables we want...
moth_ba,
fath_ba,
par_ba,
byses1,
lowinc,
female) %>%

## go ahead and drop observations with missing values
drop_na()

## set svy design data
svy_df <- svydesign(ids = ~psu,

strata = ~strat_id,
weight = ~bystuwt,
data = svy_df,
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nest = TRUE)

Now that we’ve set the survey design, let’s compare the unweighted mean with one that accounts for the
survey design.
## compare unweighted and survey-weighted mean of math scores
df %>% summarise(bynels2m_m = mean(bynels2m, na.rm = TRUE))

# A tibble: 1 x 1
bynels2m_m

<dbl>
1 45.4

svymean(~bynels2m, design = svy_df, na.rm = TRUE)

mean SE
bynels2m 44.424 0.262

It’s a little different!

We can also use the survey package to properly weight our t-tests and regression models — again, using the
object svy_df in the design argument in place of our unset df data frame.
## get svymeans by group
svyby(~bynels2m, by = ~par_ba, design = svy_df, FUN = svymean, na.rm = TRUE)

par_ba bynels2m se
0 0 41.43669 0.2481650
1 1 49.35088 0.3370024

## t-test using survey design / weights
svyttest(bynels2m ~ par_ba, design = svy_df, var.equal = TRUE)

Design-based t-test

data: bynels2m ~ par_ba
t = 22.988, df = 389, p-value < 2.2e-16
alternative hypothesis: true difference in mean is not equal to 0
95 percent confidence interval:
7.239431 8.588960

sample estimates:
difference in mean

7.914195

Notice that unlike the base R t.test() function, svyttest() gives the difference between the groups. That’s
part of the reason we began by using svyby() function with FUN = svymean. Looking at the full output
between the two functions, our results are a little different from what we got earlier without weights.

QUICK EXERCISE Compare this to the output from t.test() above.

Here’s how we run a weighted regression. Notice that it’s svyglm(), even though we used lm() before (the
default "link" function in glm() is gaussian or normal; if we had binary outcomes and wanted to use a logit
link then we could include family = binomial() as we did before).
## fit the svyglm regression and show output
svyfit <- svyglm(bynels2m ~ byses1 + female + moth_ba + fath_ba + lowinc,

design = svy_df)
summary(svyfit)
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Call:
svyglm(formula = bynels2m ~ byses1 + female + moth_ba + fath_ba +

lowinc, design = svy_df)

Survey design:
svydesign(ids = ~psu, strata = ~strat_id, weight = ~bystuwt,

data = svy_df, nest = TRUE)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 45.2221 0.2710 166.867 < 2e-16 ***
byses1 6.9470 0.2913 23.849 < 2e-16 ***
female -1.0715 0.2441 -4.389 1.47e-05 ***
moth_ba 0.6633 0.3668 1.809 0.0713 .
fath_ba 0.5670 0.3798 1.493 0.1363
lowinc -2.4860 0.3644 -6.822 3.49e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 150.5809)

Number of Fisher Scoring iterations: 2

Again, our results are little different when using the weights.

Two notes:

First, the survey library has a ton of features and is worth diving into if you regularly work with survey
data. We’ve only scratched the surface of what it can do. But keep in mind that whatever statistical test
you want to perform, there’s likely a version that works with survey weights via this library.

Second, you’ll have to spend a lot of time reading the survey methodology documents in order to understand
which weights you should you use (context always matters) so that you can properly set up your survey design
with svydesign(). But be warned: even then it won’t always be clear which weights are the “correct” weights.
That said, do as you always do: (1) your due diligence, and (2) be prepared to defend your choice as well as
note potential limitations.

Predictions
Being able to generate predictions from new data can be a powerful tool. Above, we were able to return the
predicted values from the fit object. We can also use the predict() function to return the standard error of
the prediction in addition to the predicted values for new observations.

First, we’ll get predicted values using the original data along with their standard errors.
## predict from first model
fit <- lm(bynels2m ~ byses1 + female + moth_ba + fath_ba + lowinc,

data = df)

## old data
fit_pred <- predict(fit, se.fit = TRUE)

## show options
names(fit_pred)

[1] "fit" "se.fit" "df" "residual.scale"
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head(fit_pred$fit)

1 2 3 4 5 6
42.86583 48.51465 38.78234 36.98010 32.82855 38.43332

head(fit_pred$se.fit)

[1] 0.1755431 0.2587681 0.2314676 0.2396327 0.2737971 0.2721818

With the standard errors, we can get a better feel for how much faith we want to put in our predictions.
If the standard errors are low, then maybe we feel more secure than if the errors are large. Alternatively,
perhaps the errors are uniformly lower for some parts of our data than others. If so, that might suggest more
investigation or a note on the limitations of our predictions for parts of the sample.

Two other types of predictions

We won’t practice these since in application they work similarly to what we did above. However, I do want
to note two other types of predictions that you might want to make. Both involve making predictions for
data that you didn’t use to fit your model. Predictions using new data or held-out data in a train/test
framework are another way to evaluate your model. If you predict well to new/held-out data, that can be a
good sign for the utility of your model.

Predictions with new data Ideally, we would have a new observations with which to make predic-
tions. Then we could test our modeling choices by seeing how well they predicted the outcomes of the new
observations.

With discrete outcomes (like binary 0/1 data), for example, we could use our model and right-hand side
variables from new observations to predict whether the new observation should have a 0 or 1 outcome. Then
we could compare those predictions to the actual observed outcomes by making a 2 by 2 confusion matrix that
counted the numbers of true positives and negatives (correct predictions) and false positives and negatives
(incorrect predictions).

With continuous outcomes, we could follow the same procedure as above, but rather than using a confusion
matrix, instead assess our model performance by measuring the error between our predictions and the
observed outcomes. Depending on our problem and model, we might care about minimizing the root mean
square error, the mean absolute error, or some other metric of the error.

Predictions using training and testing data In the absence of new data, we instead could have
separated our data into two data sets, a training set and test set. After fitting our model to the training
data, we could have tested it by following either above procedure with the testing data (depending on the
outcome type). Setting a rule for ourselves, we could evaluate how well we did, that is, how well our training
data model classified test data outcomes, and perhaps decide to adjust our modeling assumptions. This is a
fundamental way that many machine learning algorithm assess fit.

Margins
Using the predict() function alongside some other skills we have practiced, we can also make predictions on
the margin a la Stata’s -margins- suite of commands.

For example, after fitting our multiple regression, we might ask ourselves, what is the marginal association
of coming from a family with low income on math scores, holding all other terms in our model constant? In
other words, if student A and student B are similar along dimensions we can observe (let’s say the average
student in our sample) except for the fact that student A’s family is considered lower income and student
B’s is not, what if any test score difference might we expect?

To answer this question, we first need to make a “new” data frame with a column each for the variables used
in the model and rows that equal the number of predictive margins that we want to create. In our example,

17

https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Training,_test,_and_validation_sets
https://www.stata.com/help.cgi?margins


that means making a data frame with two rows and five columns.

With lowinc, the variable that we want to make marginal predictions for, we have two potential values: 0
and 1. This is the reason our “new” data frame has two rows. If lowinc took on four values, for example,
then our “new” data frame would have four rows, one for each potential value. But since we have two, lowinc
in our “new” data frame will equal 0 in one row and 1 in the other row.

All other columns in the “new” data frame should have consistent values down their rows. Often, each
column’s repeated value is the variable’s average in the data. Though we could use the original data frame
(df) to generate these averages, the resulting values may summarize different data from what was used to
fit the model if there were observations that lm() dropped due to missing values. That happened with our
model. We could try to use the original data frame and account for dropped observations, but I think it’s
easier to use the design matrix that’s retrieved from model.matrix().

The code below goes step-by-step to make the “new” data frame.
## create new data that has two rows, with averages and one marginal change

## (1) save model matrix
mm <- model.matrix(fit)
head(mm)

(Intercept) byses1 female moth_ba fath_ba lowinc
1 1 -0.25 1 0 0 0
2 1 0.58 1 0 0 0
3 1 -0.85 1 0 0 0
4 1 -0.80 1 0 0 1
5 1 -1.41 1 0 0 1
6 1 -1.07 0 0 0 0

## (2) drop intercept column of ones (predict() doesn't need them)
mm <- mm[,-1]
head(mm)

byses1 female moth_ba fath_ba lowinc
1 -0.25 1 0 0 0
2 0.58 1 0 0 0
3 -0.85 1 0 0 0
4 -0.80 1 0 0 1
5 -1.41 1 0 0 1
6 -1.07 0 0 0 0

## (3) convert to data frame so we can use $ notation in next step
mm <- as_tibble(mm)

## (4) new data frame of means where only lowinc changes
new_df <- tibble(byses1 = mean(mm$byses1),

female = mean(mm$female),
moth_ba = mean(mm$moth_ba),
fath_ba = mean(mm$fath_ba),
lowinc = c(0,1))

## see new data
new_df

# A tibble: 2 x 5
byses1 female moth_ba fath_ba lowinc
<dbl> <dbl> <dbl> <dbl> <dbl>
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1 0.0421 0.503 0.274 0.320 0
2 0.0421 0.503 0.274 0.320 1

Notice how the new data frame has the same terms that were used in the original model, but has only two
rows. In the lowinc column, the values switch from 0 to 1. All the other rows are averages of the data used
to fit the model. This of course makes for a somewhat nonsensical average (what does it mean that a single
father to have .32 of a BA/BS?), but that’s okay. Again, what we want right now are two students who
represent the “average” student except one is low income and the other is not.

To generate the prediction, we use the same function call as before, but use our new_df object with the
newdata argument.
## predict margins
predict(fit, newdata = new_df, se.fit = TRUE)

$fit
1 2

45.82426 43.68173

$se.fit
1 2

0.1166453 0.2535000

$df
[1] 15230

$residual.scale
[1] 12.24278

Our results show that compared to otherwise similar students, those with a family income less than $25,000
a year are predicted to score about two points lower on their math test. To be clear, this is not a casual
estimate, but rather associational. This means we would be wrong to say that having a lower family income
causes lower math test scores (which doesn’t jibe with our domain knowledge either; low income is almost
certainly a proxy for other omitted variables — access to educational resources for just one thing — that
are much more directly linked to test scores).

I also want to note that we held the other covariates at their means. We could have instead chosen other
values (e.g. fath_ba == 1 or female == 1), which would have given us different marginal associations.
Dropping or including other covariates likely would change our results, as well. The takeaway is that is that
margins you compute are a function of your model as well as (obviously) the margin you investigate.
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