
Introduction to R
EDH7916

Benjamin Skinner

print('Hello, World!')

[1] "Hello, World!"

R is a port of the S language1, which was developed at Bell Labs. As a GNU project2, R is open source and
free to use and distribute. It can be installed and used on most major operating systems.

R is best thought of as an integrated language and environment3 that was designed with statistical com-
puting and data analysis in mind. To that end, its structure is a balance between powerful mathematical
computation and high-level functionality that can be used interactively (unlike compiled code). In other
words, it’s a great tool for quantitative data analysis since it both allows you to investigate your data easily
and, when the time comes, write robust programs.

Originally, R was probably best known for its graphing capabilities. As it has matured, it has grown in
popularity among data scientists4, who have increasingly extended its functionality through user-contributed
packages5. We will use a number of packages during this course.

RStudio: an integrated development environment (IDE) for R
To work with the R language, it helps to have an application. While R ships with one (you may have seen
it on your computer after you installed R), it’s pretty plain. RStudio6, on the other hand, is a powerful
integrated design environment (IDE) that does most everything R-related very well and with little fuss: run
commands, write scripts, view output, interact with other languages and remote site, etc. There are other
options for working with R, but RStudio is a great all-around program that we will use in this course.

1https://en.wikipedia.org/wiki/S_(programming_language)
2https://www.gnu.org
3https://www.r-project.org/about.html
4http://blog.revolutionanalytics.com/2018/01/tiobe-2017.html
5http://blog.revolutionanalytics.com/2017/01/cran-10000.html
6https://www.rstudio.com

1

https://en.wikipedia.org/wiki/S_(programming_language)
https://www.gnu.org
https://www.r-project.org/about.html
http://blog.revolutionanalytics.com/2018/01/tiobe-2017.html
http://blog.revolutionanalytics.com/2017/01/cran-10000.html
https://www.rstudio.com

RStudio has 3-4 main frames:

1. Console
2. Script window (will be closed at first if you don’t have any scripts open)
3. Environment / History / Connections
4. Files / Plots / Packages / Help / Viewer

Each has a useful purpose, but for today, we’ll mostly focus on the console itself.

Quick exercise If you haven’t already, try entering an equation in the console (like 1 + 1). Next,
open the script associated with this module and run the first line. Welcome to R!

Assignment
R is a type of object-oriented programming7 environment. This means that R thinks of things in its world
as objects, which are like virtual boxes in which we can put things: data, functions, and even other objects.

Before discussing data types and structures, the first lesson in R is how to assign values to objects. In R (for
quirky reasons8), the primary means of assignment is the arrow, <-, which is a less than symbol, <, followed
by a hyphen, -.
assign value to object x using <-
x <- 1

NOTE: You can also use a single equals sign, =, to assign a value to an object: x = 1. Keep in mind,
however, that since = sometimes has other meanings in R and can be confused with ==, which is different,
it’s generally clearer to use <-.

7https://en.wikipedia.org/wiki/Object-oriented_programming
8http://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html

2

https://en.wikipedia.org/wiki/Object-oriented_programming
http://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html

But’s where’s the output?

R does exactly what you ask it to do — no more, no less. If you don’t ask it to return something, either
explicitly from a function or implicitly by printing to the console, it won’t. This can be huge source of
frustration to new users.

The good-ish news is that by default, R will print an object’s contents to the console if it’s the only thing
you type in. Many functions similarly print to the console if you don’t assign the output to an object. You
can see this when simply type a number or character into the console.
when you input a number or character, R returns it back to you
1

[1] 1

"a"

[1] "a"

Basically, you’ve just told R “Here’s a 1” and R said “The content of 1 is 1”. Same for "a". The initial
number in the square brackets ([1]) is telling you the index (place within the object) of the first item. Since
we only have one item, it’s just [1].

When you store something in an object, you can type the object’s name into the console to see what’s in it.
what's in x?
x

[1] 1

A neat trick if you want to both assign a value and see the results printed to the output is to to wrap the
entire line in ().
wrap in () to print after assignment
(x <- 5)

[1] 5

Quick exercise Using the arrow, assign the output of 1 + 1 to x. Next subtract 1 from x and reassign
the result to x. Show the value in x.

A NOTE ON “GOOD-ISH” Keep in mind how much data your object has / might have when printing
it to the console. For a small amount, printing is just fine. But if you have, for example, a matrix with
1,000 columns and 1 million rows, printing might not be a useful exercise. There are other ways, such as the
function head() that might be more useful in these situations.

Comments
You may have noticed already, but comments in R are set off using the hash or pound character at the
beginning of the line: #. The comment character tells R to ignore the line, that is, do not try to interpret it
as code you the user want run.

Quick exercise Type the phrase “This is a comment” directly into the R console both with and
without a leading “#”. What happens each time?

3

You may notice that I use two hashes. This is a stylistic tick that has more to do with the editor I use than
an R requirement. You can use only a single # for your comments if you like.

Data types and structures
R uses variety of data types and structures to represent and work with data. There are many, but the major
ones that you’ll use most often are:

• logical
• numeric (integer & double)
• character
• vector
• matrix
• list
• dataframe

Understanding the nuanced differences between data types is not important right now. Just know that they
exist and that you’ll gain an intuitive understanding of them as you become better aquainted with R.

Packages
User-submitted packages are a huge part of what makes R great. You may hear me use the phrases “base
R” during class. What I mean by this is the R that comes as you download it with no packages loaded
(sometimes also called “vanilla R”). While it’s powerful in and of itself — you can do everything you need
with base R — most of your scripts will make use of one of more contributed packages. These will make
your data analytic life much nicer. We’ll lean heavily on the tidyverse9 suite of packages this semester.

Installing packages from CRAN

Many contributed packages are hosted on the CRAN package repository10. What’s really nice about CRAN
is that packages have to go through quite a few checks in order for CRAN to approve and host them. Checks
include making sure the package has documentation, works on a variety of systems, and doesn’t try to do
odd things to your computer. The upshot is that you should feel okay downloading these packages from
CRAN.

To download a package from CRAN, use:
install.packages("<package name>")

NOTE Throughout this course, if you see something in triangle brackets (<...>), that means it’s a place-
holder for you to change accordingly.

Many packages rely on other packages to function properly. When you use install.packages(), the default
option is to install all dependencies. By default, R will check how you installed R and download the right
operating system file type.

Quick exercise Install the tidyverse11 package, which is really a suite of packages that we’ll use
throughout the semester. Don’t forget to use double quotation marks around the package name: in-
stall.packages("tidyverse")

Loading package libraries

Package libraries can loaded in a number of ways, but the easiest it to write:
9https://www.tidyverse.org

10https://cran.r-project.org/web/packages/available_packages_by_name.html

4

https://www.tidyverse.org
https://cran.r-project.org/web/packages/available_packages_by_name.html

library("<library name>")

where "<library name>" is the name of the package/library. You will need to load these before you can use
their functions in your scripts. Typically, they are placed at the top of the script file.

For example, let’s load the tidyverse library we just installed:
load library (note quirk that you don't need quotes here)
library(tidyverse)

── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──

✔ ggplot2 3.3.5 ✔ purrr 0.3.4
✔ tibble 3.1.6 ✔ dplyr 1.0.7
✔ tidyr 1.1.4 ✔ stringr 1.4.0
✔ readr 2.1.1 ✔ forcats 0.5.1

── Conflicts ── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()

Notice that when you load the tidyverse (which, again, is actually loading a number of other libraries), you
see a lot of output. Not all packages are this noisy, but the information is useful here because it shows all
the libraries that are now loaded and ready for you to use.

Help
I don’t have every R function and nuance memorized, so I certainly don’t expect that you will. With all the
user-written packages, it would be difficult to keep up if I tried! When stuck, there are a few ways to get
help.

Help files

In the console, typing a function name immediately after a question mark will bring up that function’s help
file (in RStudio, you should see in the bottom right facet):
get help file for function
?median

Median Value
##
Description:
##
Compute the sample median.
##
Usage:
##
median(x, na.rm = FALSE, ...)
##
Arguments:
##
x: an object for which a method has been defined, or a numeric
vector containing the values whose median is to be computed.
##
na.rm: a logical value indicating whether 'NA' values should be
stripped before the computation proceeds.
##
...: potentially further arguments for methods; not used in the

5

default method.
##
Details:
##
This is a generic function for which methods can be written.
However, the default method makes use of 'is.na', 'sort' and
'mean' from package 'base' all of which are generic, and so the
default method will work for most classes (e.g., '"Date"') for
which a median is a reasonable concept.
##
Value:
##
The default method returns a length-one object of the same type as
'x', except when 'x' is logical or integer of even length, when
the result will be double.
##
If there are no values or if 'na.rm = FALSE' and there are 'NA'
values the result is 'NA' of the same type as 'x' (or more
generally the result of 'x[FALSE][NA]').
##
References:
##
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
Language_. Wadsworth & Brooks/Cole.
##
See Also:
##
'quantile' for general quantiles.
##
Examples:
##
median(1:4) # = 2.5 [even number]
median(c(1:3, 100, 1000)) # = 3 [odd, robust]

Two question marks will search for the command name in CRAN packages (again, in the bottom right facet):
search for function in CRAN
??median

Package Topic Title
bit64 qtile (Q)uan(Tile)s
broom tidy.mediate Tidy a(n) mediate object
distributional median.distribution Median of a probability distribution
ellipsis safe_median Safe version of median
future readImmediateConditionsRead All ‘immediateCondition’ RDS Files
future sticky_globals Place a sticky-globals environment immediately after the global

environment
ggplot2 hmisc A selection of summary functions from Hmisc
googledrive drive_put PUT new media into a Drive file
Hmisc smean.cl.normal Compute Summary Statistics on a Vector
httr guess_media Guess the media type of a path from its extension.
httr parse_media Parse a media type.
igraph time_bins.sir SIR model on graphs
matrixStats rowMedians Calculates the median for each row (column) in a matrix
matrixStats rowWeightedMedians Calculates the weighted medians for each row (column) in a matrix

6

Package Topic Title
matrixStats weightedMad Weighted Median Absolute Deviation (MAD)
matrixStats weightedMedian Weighted Median Value
miscTools colMedians Medians of Columns
miscTools rowMedians Medians of Rows
posterior ess_quantile Effective sample sizes for quantiles
posterior mcse_quantile Monte Carlo standard error for quantiles
posterior rvar-summaries-over-

draws
Summaries of random variables within array elements, over draws

posterior rvar-summaries-
within-draws

Summaries of random variables over array elements, within draws

PowerUpR cra2 Two-level Cluster-randomized Trials to Detect Main, Moderation
and Mediation Effects

PowerUpR cra3 Three-level Cluster-randomized Trials to Detect Main, Moderation,
and Mediation Effects

PowerUpR med_pn Partially Nested Designs Probing Multilevel Mediation
purrr accumulate Accumulate intermediate results of a vector reduction
raster Summary-methods Summary methods
recipes step_impute_median Impute numeric data using the median
recipes tidy.step_BoxCox Tidy the Result of a Recipe
spatstat.geom mean.im Mean and Median of Pixel Values in an Image
spatstat.geom weighted.median Weighted Median, Quantiles or Variance
spatstat.linnet mean.linim Mean, Median, Quantiles of Pixel Values on a Linear Network
survival Math.Surv Methods for Surv objects
terra Summary-methods Summarize
zoo rollmean Rolling Means/Maximums/Medians/Sums
zoo zoo Z’s Ordered Observations
stats mad Median Absolute Deviation
stats median Median Value
stats medpolish Median Polish (Robust Twoway Decomposition) of a Matrix
stats runmed Running Medians - Robust Scatter Plot Smoothing
stats smooth Tukey’s (Running Median) Smoothing
stats smoothEnds End Points Smoothing (for Running Medians)

At first, using help files may feel like trying to use a dictionary to see how to spell a word — if you knew
how to spell it, you wouldn’t need the dictionary! Similarly, if you knew what you needed, you wouldn’t
need the help file. But over time, they will become more useful, particularly when you want to figure out an
obscure option that will give you exactly what you need.

Google it!

Google is a coder’s best friend. If you are having a problem, odds are a 1,000+ other people have too and at
least one of them has been brave enough to ask about it in a forum like StackOverflow12, CrossValidated13,
or R-help mailing list14.

If you are lucky, you’ll find the exact answer to your question. More likely, you’ll find a partial answer that
you’ll need to modify for your needs. Sometimes, you’ll find multiple partial answers that, in combination,
help you figure out a solution. It can feel overwhelming at first, particularly if it’s a way of problem-solving
that’s different from what you’re used to. But it does become easier with practice.

Google it!
12https://stackoverflow.com
13https://stackoverflow.com
14https://stat.ethz.ch/mailman/listinfo/r-help

7

https://stackoverflow.com
https://stackoverflow.com
https://stat.ethz.ch/mailman/listinfo/r-help

Asking for help: order of operations

When needing help for this class, your order of operations should be:

1. Try a lot on your own (perhaps using rubber duck debugging15)
2. R help files
3. Google
4. Class peers (directly or through our Issues16 page)
5. Me

This is not because I don’t want to help. My concern is the opposite: that I’m likely to just show you. Data
analysis is tricky because no two problems are alike. But over time, they do rhyme. The time you put in
now learning to figure things out on your own will be well paid in the future.

Useful packages
We’re going to use a number of packages this semester. While we may need more than this list — and you
almost certainly will in your own future work — let’s install these to get us started.

Quick exercise Install the following packages using the install.packages() function: - devtools -
here - usethis - gitcreds

15https://en.wikipedia.org/wiki/Rubber_duck_debugging
16https://github.com/edquant/edh7916/issues?q=is%3Aissue+is%3Aopen

8

https://en.wikipedia.org/wiki/Rubber_duck_debugging
https://github.com/edquant/edh7916/issues?q=is%3Aissue+is%3Aopen

	RStudio: an integrated development environment (IDE) for R
	Assignment
	But’s where’s the output?

	Comments
	Data types and structures
	Packages
	Installing packages from CRAN
	Loading package libraries

	Help
	Help files
	Google it!
	Asking for help: order of operations

	Useful packages

